Galoisgruppe x^4-10x^2+4 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] f= x^4-10x^2+4 \in \IQ[X] [/mm]. Bestimmen Sie den Zerfällungskörper [mm] L [/mm] von [mm] f [/mm], seinen Grad [mm] [L: \IQ] [/mm], die Galoisgruppe von [mm] f [/mm] und alle Zwischenkörper der Erweiterung [mm] L/ \IQ [/mm] Welche der Zwischenkörper sind galoisch über [mm] \IQ [/mm]? |
Man betrachte [mm] g=x^2-10x+4 [/mm]. Die NST von [mm] g [/mm] sind [mm] 5\pm \wurzel{21} [/mm] Damit sind die NST von [mm] f [/mm] : [mm] \pm \wurzel{5 \pm \wurzel{21}} [/mm]. Damit ist [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) [/mm]. Und [mm] [L: \IQ] \le 8 [/mm]. Ich kann mir vorstellen, dass man [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) [/mm] umschreiben kann. Also statt der komplizierten Wurzelausdrücke einfache Terme (Beispielsweise a,b) adjungieren kann, sodass [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) = \IQ(a,b) [/mm] und dann leichter den Grad bestimmen kann. Leider komme ich hier nicht so richtig weiter.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:28 Do 02.04.2015 | Autor: | hippias |
Oftmals ist es erhellend Potenzen, Summen oder Produkte der Wurzeln zu bilden. Fuer Dein Problem liefert das letztere brauchbare Einsichten.
|
|
|
|
|
Okay wir haben also [mm] \wurzel{5+ \wurzel{21}}*\wurzel{5-\wurzel{21}}=2 [/mm] Daraus folgt [mm] L=\IQ(\wurzel{5+ \wurzel{21}}) [/mm]. Dann gilt, dass der Grad kleiner als 4 da [mm] \wurzel{5+ \wurzel{21}})[/mm] NST von f mit Grad 4. Über die Irreduziblität von f kann man weder mit dem Eisensteinkriterium etwas aussagen, noch komme ich per Reduktionskriterium weiter. Wahrscheinlich kommt man hiermit einem Widerspruchsbeweis zum Ziel. Oder kennt hier jemand eine einfachere Methode?
... Ein Widerpsruchsbeweis führt zum Ziel. Damit ist der Grad gleich 4. Die Galoisgruppe ist also Isomorph zu [mm] \IZ/2\IZ \times \IZ/2\IZ [/mm] oder [mm] \IZ/4\IZ [/mm] Einfaches nachprüfen ergibt, dass jedes Element in der Galoisgruppe Grad 2 oder kleiner hat. und somit [mm] Gal(L/Q) \cong \IZ/2\IZ \times \IZ/2\IZ [/mm]. Diese hat 3 Untergruppen und nach dem Hauptsatz der Galoistheorie korrespondieren diese mit den Zwischenkörpern der Erweiterung. Die 4 Elemente der Galoisgruppe sind eindetuig bestimmt durch :
[mm] f_1(\wurzel{5+\wurzel{21}}) = \wurzel{5+\wurzel{21}} [/mm]
[mm] f_2(\wurzel{5+\wurzel{21}}) = \wurzel{5-\wurzel{21}} [/mm]
[mm] f_3(\wurzel{5+\wurzel{21}}) = -\wurzel{5+\wurzel{21}} [/mm]
[mm] f_4(\wurzel{5+\wurzel{21}}) = -\wurzel{5-\wurzel{21}} [/mm]
Die Untergruppen sind gegen durch [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur noch die entsprechenden fixen Elemente finden hat da jemand ne Idee?
Zu Letzt wegen [mm] char(\IQ) = 0, \IZ/2\IZ \times \IZ/2\IZ [/mm] abelsch sind alle Untergruppen Normalteiler und damit alle Zwischenkörper galoisch.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:07 So 05.04.2015 | Autor: | hippias |
> Die Untergruppen sind gegen durch
> [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur
> noch die entsprechenden fixen Elemente finden hat da jemand
> ne Idee?
Finde eine Basis des Raumes und berechne damit die Fixkoerper (dann musst Du nur ein LGS loesen).
>
> Zu Letzt wegen [mm]char(\IQ) = 0, \IZ/2\IZ \times \IZ/2\IZ[/mm]
> abelsch sind alle Untergruppen Normalteiler und damit alle
> Zwischenkörper galoisch.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 So 05.04.2015 | Autor: | statler |
Hi!
> Die Untergruppen sind gegen durch
> [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur
> noch die entsprechenden fixen Elemente finden hat da jemand
> ne Idee?
Versuch mal, die Körper [mm]\IQ(\wurzel{21})[/mm], [mm]\IQ(\wurzel{14})[/mm] und [mm]\IQ(\wurzel{6})[/mm] zuzuordnen.
Gruß aus HH und frohe Ostern
Dieter
|
|
|
|