www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Galoisgruppe x^4-10x^2+4
Galoisgruppe x^4-10x^2+4 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe x^4-10x^2+4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 02.04.2015
Autor: MeineKekse

Aufgabe
Sei [mm] f= x^4-10x^2+4 \in \IQ[X] [/mm]. Bestimmen Sie den Zerfällungskörper [mm] L [/mm] von [mm] f [/mm], seinen Grad [mm] [L: \IQ] [/mm], die Galoisgruppe von [mm] f [/mm] und alle Zwischenkörper der Erweiterung [mm] L/ \IQ [/mm] Welche der Zwischenkörper sind galoisch über [mm] \IQ [/mm]?

Man betrachte [mm] g=x^2-10x+4 [/mm]. Die NST von [mm] g [/mm]  sind [mm] 5\pm \wurzel{21} [/mm] Damit sind die NST von [mm] f [/mm] : [mm] \pm \wurzel{5 \pm \wurzel{21}} [/mm]. Damit ist [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) [/mm]. Und  [mm] [L: \IQ] \le 8 [/mm].  Ich kann mir vorstellen, dass man [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) [/mm] umschreiben kann. Also statt der komplizierten Wurzelausdrücke einfache Terme (Beispielsweise a,b) adjungieren kann, sodass [mm]L=\IQ(\wurzel{5 +\wurzel{21}},\wurzel{5 -\wurzel{21}}) = \IQ(a,b) [/mm] und dann leichter den Grad bestimmen kann. Leider komme ich hier nicht so richtig weiter.

        
Bezug
Galoisgruppe x^4-10x^2+4: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Do 02.04.2015
Autor: hippias

Oftmals ist es erhellend Potenzen, Summen oder Produkte der Wurzeln zu bilden. Fuer Dein Problem liefert das letztere brauchbare Einsichten.

Bezug
                
Bezug
Galoisgruppe x^4-10x^2+4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Do 02.04.2015
Autor: MeineKekse

Okay wir haben also [mm] \wurzel{5+ \wurzel{21}}*\wurzel{5-\wurzel{21}}=2 [/mm] Daraus folgt [mm] L=\IQ(\wurzel{5+ \wurzel{21}}) [/mm]. Dann gilt, dass der Grad kleiner als 4 da [mm] \wurzel{5+ \wurzel{21}})[/mm] NST von f mit Grad 4. Über die Irreduziblität von f kann man weder mit dem Eisensteinkriterium etwas aussagen, noch komme ich per Reduktionskriterium weiter. Wahrscheinlich kommt man hiermit einem Widerspruchsbeweis zum Ziel. Oder kennt hier jemand eine einfachere Methode?

... Ein Widerpsruchsbeweis führt zum Ziel. Damit ist der Grad gleich 4. Die Galoisgruppe ist also Isomorph zu [mm] \IZ/2\IZ \times \IZ/2\IZ [/mm] oder [mm] \IZ/4\IZ [/mm] Einfaches nachprüfen ergibt, dass jedes Element in der Galoisgruppe Grad 2 oder kleiner hat. und somit [mm] Gal(L/Q) \cong \IZ/2\IZ \times \IZ/2\IZ [/mm]. Diese hat 3 Untergruppen und nach dem Hauptsatz der Galoistheorie korrespondieren diese mit den Zwischenkörpern der Erweiterung. Die 4 Elemente der Galoisgruppe sind eindetuig bestimmt durch :
[mm] f_1(\wurzel{5+\wurzel{21}}) = \wurzel{5+\wurzel{21}} [/mm]
[mm] f_2(\wurzel{5+\wurzel{21}}) = \wurzel{5-\wurzel{21}} [/mm]
[mm] f_3(\wurzel{5+\wurzel{21}}) = -\wurzel{5+\wurzel{21}} [/mm]
[mm] f_4(\wurzel{5+\wurzel{21}}) = -\wurzel{5-\wurzel{21}} [/mm]

Die Untergruppen sind gegen durch [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur noch die entsprechenden fixen Elemente finden hat da jemand ne Idee?

Zu Letzt wegen [mm] char(\IQ) = 0, \IZ/2\IZ \times \IZ/2\IZ [/mm] abelsch sind alle Untergruppen Normalteiler und damit alle Zwischenkörper galoisch.

Bezug
                        
Bezug
Galoisgruppe x^4-10x^2+4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 So 05.04.2015
Autor: hippias

  
> Die Untergruppen sind gegen durch
> [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur
> noch die entsprechenden fixen Elemente finden hat da jemand
> ne Idee?

Finde eine Basis des Raumes und berechne damit die Fixkoerper (dann musst Du nur ein LGS loesen).

>  
> Zu Letzt wegen [mm]char(\IQ) = 0, \IZ/2\IZ \times \IZ/2\IZ[/mm]
> abelsch sind alle Untergruppen Normalteiler und damit alle
> Zwischenkörper galoisch.


Bezug
                        
Bezug
Galoisgruppe x^4-10x^2+4: Tipp
Status: (Antwort) fertig Status 
Datum: 18:00 So 05.04.2015
Autor: statler

Hi!

> Die Untergruppen sind gegen durch
> [mm]\{f_1,f_2\},\{f_1,f_3\},\{f_1,f_4\}[/mm]. Jetzt muss ich nur
> noch die entsprechenden fixen Elemente finden hat da jemand
> ne Idee?

Versuch mal, die Körper [mm]\IQ(\wurzel{21})[/mm], [mm]\IQ(\wurzel{14})[/mm] und [mm]\IQ(\wurzel{6})[/mm] zuzuordnen.

Gruß aus HH und frohe Ostern
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]