www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Galoisgruppe
Galoisgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 12.02.2014
Autor: derriemann

Aufgabe
Sei L der Zerfällungskörper von [mm] f(x)=x^{3}-5 [/mm] über [mm] \IQ. [/mm]
a) Zeigen Sie, dass es über [mm] \IQ [/mm] algebraische Elemente [mm] \alpha,\beta \in [/mm] L gibt, so dass [mm] L=\IQ(\Alpha,\beta) [/mm] gilt und berechnen Sie damit [mm] [L:\IQ] [/mm]

b) Bestimmen Sie die Galoisgruppe von L über [mm] \IQ [/mm]

Hallo,

zu a)

Nullstellen von f(x) sind [mm] \wurzel[3]{5}, \zeta\wurzel[3]{5}, \zeta^{2}\wurzel[3]{5}, [/mm] mit [mm] \zeta:=-\bruch{1+i\wurzel{3}}{2}. [/mm]
Algebraische Elemente über [mm] \IQ [/mm] wären [mm] \alpha [/mm] = [mm] \zeta [/mm] , sowie [mm] \beta [/mm] = [mm] \wurzel[3]{5}, [/mm] also L = [mm] \IQ(\zeta,\wurzel[3]{5}). [/mm]
[mm] [L:\IQ]=[L:\IQ(\wurzel[3]{5})]*[\IQ(\wurzel[3]{5}):\IQ]=2*3=6 [/mm]

zu b)

Nun wird es in der Musterlösung ein wenig merkwürdig:

[mm] \alpha [/mm] = [mm] \zeta [/mm] , [mm] \beta [/mm] = [mm] \wurzel[3]{5} [/mm]

Wir erhalten 6 Automorphismen:

[mm] \varphi_{1}: [/mm]                                          
1 [mm] \longmapsto [/mm] 1                                        
[mm] \alpha \longmapsto \alpha [/mm]      
[mm] \beta \longmapsto \beta [/mm]    
    
[mm] \varphi_{2}: [/mm]
1 [mm] \longmapsto [/mm] 1    
[mm] \alpha \longmapsto \alpha [/mm]  
[mm] \beta \longmapsto \alpha\beta [/mm]

[mm] \varphi_{3}: [/mm]
1 [mm] \longmapsto [/mm] 1
[mm] \alpha \longmapsto \alpha [/mm]
[mm] \beta \longmapsto \alpha^{2}\beta [/mm]

[mm] \varphi_{4}: [/mm]
1 [mm] \longmapsto [/mm] 1
[mm] \alpha \longmapsto \alpha^{2} [/mm]
[mm] \beta \longmapsto \beta [/mm]

[mm] \varphi_{5}: [/mm]
1 [mm] \longmapsto [/mm] 1
[mm] \alpha \longmapsto \alpha^{2} [/mm]
[mm] \beta \longmapsto \alpha\beta [/mm]

[mm] \varphi_{6}: [/mm]
1 [mm] \longmapsto [/mm] 1
[mm] \alpha \longmapsto \alpha^{2} [/mm]
[mm] \beta \longmapsto \alpha^{2}\beta [/mm]

Die Frage ist: Wo kommt denn z.B. die 1 auf einmal her?

Würde mich über Hilfe freuen :-)

LG

        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mi 12.02.2014
Autor: MaslanyFanclub

Hallo,
> Sei L der Zerfällungskörper von [mm]f(x)=x^{3}-5[/mm] über [mm]\IQ.[/mm]
>  a) Zeigen Sie, dass es über [mm]\IQ[/mm] algebraische Elemente
> [mm]\alpha,\beta \in[/mm] L gibt, so dass [mm]L=\IQ(\Alpha,\beta)[/mm] gilt
> und berechnen Sie damit [mm][L:\IQ][/mm]
>  
> b) Bestimmen Sie die Galoisgruppe von L über [mm]\IQ[/mm]
>  Hallo,
>  
> zu a)
>  
> Nullstellen von f(x) sind [mm]\wurzel[3]{5}, \zeta\wurzel[3]{5}, \zeta^{2}\wurzel[3]{5},[/mm]
> mit [mm]\zeta:=-\bruch{1+i\wurzel{3}}{2}.[/mm]
>  Algebraische Elemente über [mm]\IQ[/mm] wären [mm]\alpha[/mm] = [mm]\zeta[/mm] ,
> sowie [mm]\beta[/mm] = [mm]\wurzel[3]{5},[/mm] also L =
> [mm]\IQ(\zeta,\wurzel[3]{5}).[/mm]
> [mm][L:\IQ]=[L:\IQ(\wurzel[3]{5})]*[\IQ(\wurzel[3]{5}):\IQ]=2*3=6[/mm]
>  

keine Einwände nur ein kleiner Tipp: [mm] $\zeta =e^\frac{2\pi i}{3}$ [/mm] ist meist die nützlichere Schreibweise. Damit sieht man mMn Inverse besser und auch die Struktur der Menge der Einheitswurzeln.

> zu b)
>
> Nun wird es in der Musterlösung ein wenig merkwürdig:
>  
> [mm]\alpha[/mm] = [mm]\zeta[/mm] , [mm]\beta[/mm] = [mm]\wurzel[3]{5}[/mm]
>  
> Wir erhalten 6 Automorphismen:
>  
> [mm]\varphi_{1}:[/mm]                                          
> 1 [mm]\longmapsto[/mm] 1                                        
> [mm]\alpha \longmapsto \alpha[/mm]      
> [mm]\beta \longmapsto \beta[/mm]    
>
> [mm]\varphi_{2}:[/mm]
>  1 [mm]\longmapsto[/mm] 1    
> [mm]\alpha \longmapsto \alpha[/mm]  
> [mm]\beta \longmapsto \alpha\beta[/mm]
>  
> [mm]\varphi_{3}:[/mm]
>  1 [mm]\longmapsto[/mm] 1
>  [mm]\alpha \longmapsto \alpha[/mm]
>  [mm]\beta \longmapsto \alpha^{2}\beta[/mm]
>
> [mm]\varphi_{4}:[/mm]
>  1 [mm]\longmapsto[/mm] 1
>  [mm]\alpha \longmapsto \alpha^{2}[/mm]
>  [mm]\beta \longmapsto \beta[/mm]
>  
> [mm]\varphi_{5}:[/mm]
>  1 [mm]\longmapsto[/mm] 1
>  [mm]\alpha \longmapsto \alpha^{2}[/mm]
>  [mm]\beta \longmapsto \alpha\beta[/mm]
>  
> [mm]\varphi_{6}:[/mm]
>  1 [mm]\longmapsto[/mm] 1
>  [mm]\alpha \longmapsto \alpha^{2}[/mm]
>  [mm]\beta \longmapsto \alpha^{2}\beta[/mm]
>  
> Die Frage ist: Wo kommt denn z.B. die 1 auf einmal her?
>  

Die 1 ist nur dazu da aufzuzeigen, dass der Automorphismus [mm] $\mathbb [/mm] Q$ fix lässt.

> Würde mich über Hilfe freuen :-)
>  
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]