www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Galois-Gruppe
Galois-Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galois-Gruppe: Erklärung
Status: (Frage) beantwortet Status 
Datum: 02:35 Do 11.10.2012
Autor: Quadratur

Aufgabe
Sei [mm] L=\IQ(\wurzel[4]{2},i) [/mm] eine Körpererweiterung von [mm] \IQ. [/mm] Zeigen Sie:

a) L ist Zerfällungskörper des Polynoms [mm] x^4-2\in\IQ[x] [/mm]

b) Bestimmen Sie den Grad von L über [mm] \IQ, [/mm] sowie alle [mm] \IQ-Automorphismen [/mm]

Hallo alle zusammen,

ich lerne gerade für eine mündliche Prüfung und muss dafür die Galoistheorie besser verstehen.

zu a) um zu zeigen, dass L der (bzw. ein) Zerfällungskörper von f ist, müssen wir zeigen, dass f über L in Linearfaktoren zerfällt und da gilt:

[mm] f(x)=x^4-2=(x-\wurzel[4]{2})(x+\wurzel[4]{2})(x-i\wurzel[4]{2})(x+i\wurzel[4]{2}) [/mm]

und alle [mm] \alpha_1,...,\alpha_4 [/mm] offensichtlich in L liegen, ist der Beweis hierfür doch schon erbracht.

zu b) Der Grad der Körpererweiterung ist 8, welches aus dem Gradsatz (bzw. Turmlemma) folgt

Jetzt weiß man doch aus der Galoistheorie, dass es sich bei der Körpererweiterung um eine Galoiserweiterung handelt, da sie normal und separabel ist, weswegen gilt:

[mm] |Gal(L/\IQ)|=[L:\IQ]=8 [/mm]

daraus folgt, dass wir dann insgesamt 8 Automorphismen von L haben müssen. Wie man sie allerdings berechnet, ist mir noch unklar ... Wir sind dabei folgendermaßen vorgegangen:

Sei [mm] \sigma\in\mathBB{Aut}_\IQ(L) [/mm] mit [mm] \sigma(i)=i [/mm] und [mm] \sigma(\wurzel[4]{2})=i\wurzel[4]{2} [/mm]
Sei [mm] \tau\in\mathBB{Aut}_\IQ(L) [/mm] mit [mm] \tau(i)=-i [/mm] und [mm] \tau(\wurzel[4]{2})=\wurzel[4]{2}, [/mm] dann gilt:

[mm] \mathBB{Aut}_\IQ(L)=\{Id, \sigma,\sigma^2,\sigma^3,\tau,\sigma\tau,\sigma^2\tau,\sigma^3\tau\} [/mm] mit [mm] \tau\sigma=\sigma^3\tau [/mm]

Meine Frage hierzu ist, wie man auf diese zwei erzeugenden Elemente [mm] \sigma [/mm] und [mm] \tau [/mm] kommt? Und was genau ist jetzt zum Beispiel [mm] \sigma\tau? [/mm] Ist das [mm] \sigma\tau(i)=-i [/mm] und [mm] \sigma\tau(\wurzel[4]{2})=i\wurzel[4]{2}? [/mm]

Nach meiner Kenntnis permutieren die Automorphismen doch nur die Nullstellen, oder?

Beste Grüße und vielen Dank im Voraus,
Alex

        
Bezug
Galois-Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 11.10.2012
Autor: hippias


> Sei [mm]L=\IQ(\wurzel[4]{2},i)[/mm] eine Körpererweiterung von [mm]\IQ.[/mm]
> Zeigen Sie:
>  
> a) L ist Zerfällungskörper des Polynoms [mm]x^4-2\in\IQ[x][/mm]
>  
> b) Bestimmen Sie den Grad von L über [mm]\IQ,[/mm] sowie alle
> [mm]\IQ-Automorphismen[/mm]
>  Hallo alle zusammen,
>  
> ich lerne gerade für eine mündliche Prüfung und muss
> dafür die Galoistheorie besser verstehen.
>  
> zu a) um zu zeigen, dass L der (bzw. ein)
> Zerfällungskörper von f ist, müssen wir zeigen, dass f
> über L in Linearfaktoren zerfällt und da gilt:
>  
> [mm]f(x)=x^4-2=(x-\wurzel[4]{2})(x+\wurzel[4]{2})(x-i\wurzel[4]{2})(x+i\wurzel[4]{2})[/mm]
>  
> und alle [mm]\alpha_1,...,\alpha_4[/mm] offensichtlich in L liegen,
> ist der Beweis hierfür doch schon erbracht.
>
> zu b) Der Grad der Körpererweiterung ist 8, welches aus
> dem Gradsatz (bzw. Turmlemma) folgt
>  
> Jetzt weiß man doch aus der Galoistheorie, dass es sich
> bei der Körpererweiterung um eine Galoiserweiterung
> handelt, da sie normal und separabel ist, weswegen gilt:
>  
> [mm]|Gal(L/\IQ)|=[L:\IQ]=8[/mm]
>  
> daraus folgt, dass wir dann insgesamt 8 Automorphismen von
> L haben müssen. Wie man sie allerdings berechnet, ist mir
> noch unklar ... Wir sind dabei folgendermaßen
> vorgegangen:
>  
> Sei [mm]\sigma\in\mathBB{Aut}_\IQ(L)[/mm] mit [mm]\sigma(i)=i[/mm] und
> [mm]\sigma(\wurzel[4]{2})=i\wurzel[4]{2}[/mm]
>  Sei [mm]\tau\in\mathBB{Aut}_\IQ(L)[/mm] mit [mm]\tau(i)=-i[/mm] und
> [mm]\tau(\wurzel[4]{2})=\wurzel[4]{2},[/mm] dann gilt:
>  
> [mm]\mathBB{Aut}_\IQ(L)=\{Id, \sigma,\sigma^2,\sigma^3,\tau,\sigma\tau,\sigma^2\tau,\sigma^3\tau\}[/mm]
> mit [mm]\tau\sigma=\sigma^3\tau[/mm]
>  
> Meine Frage hierzu ist, wie man auf diese zwei erzeugenden
> Elemente [mm]\sigma[/mm] und [mm]\tau[/mm] kommt? Und was genau ist jetzt zum
> Beispiel [mm]\sigma\tau?[/mm] Ist das [mm]\sigma\tau(i)=-i[/mm] und
> [mm]\sigma\tau(\wurzel[4]{2})=i\wurzel[4]{2}?[/mm]
>  
> Nach meiner Kenntnis permutieren die Automorphismen doch
> nur die Nullstellen, oder?

Die Automorphismen bewegen noch mehr als nur die Nullstellen, aber ihre Wirkung auf diese ist oft besonders durchsichtig. Es genuegt sich die Wirkung der Automorphismen auf einem Erzeugendensystem klarzumachen; daher genuegt es die Bilder von $i$ und [mm] $\wurzel[4]{2}$ [/mm] anzugeben. Die Moeglichkeiten dafuer sind eingeschraenkt, da die Bilder z.B. gleiche Minimalpolynome haben muessen.
Da Du schon die Ordnung der Gruppe kennst, genuegt es zu ueberpruefen, ob [mm] $\sigma$ [/mm] und [mm] $\tau$ [/mm] eine Gruppe der Ordnung $8$ erzeugen, denn dann erzeugen sie die gesamte Galoisgruppe. Die Bilder von [mm] $\sigma\tau$ [/mm] hast Du richtig ermittelt.

>  
> Beste Grüße und vielen Dank im Voraus,
>  Alex


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]