www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gal.G. v. f über K,[L:K] Best.
Gal.G. v. f über K,[L:K] Best. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gal.G. v. f über K,[L:K] Best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 02.12.2008
Autor: Fry

Hallo :),

also ich schaue mir gerade ein Beispiel zum Thema Galoisgruppen von Gleichungen an(Bosch, S.160) und zwar soll [mm] f=X^3+aX+b \in [/mm] K[X] mit char [mm] K\not=2,3 [/mm] und [mm] a\not=0 [/mm] sein. Somit ist f irreduzibel über K und separabel. L sei Zerfällungskörper von f über K. [mm] c,d\in [/mm] L  seien Nullstelle von f. Gesucht ist nun [L:K]. Im Bosch steht nun, dass entweder [L:K]=3 oder [L:K]=6 ist.
Warum ?
Meine Überlegungen dazu:
Also mir ist klar, dass [K(c):K]=3, da f MiPo von c über K.
[L:K]=[K(c,d):K(c)]*3 nach Gradformel
Es gilt ja sicher [mm] grad(MiPo(d)/K(c))\le [/mm] grad(MiPo(d)/K)
Aber warum gilt dann wirklich "<" ? Weil das MiPo von d über K eine Nullstelle in K(c) besitzt ?
Wäre dankbar, wenn mir jemand da weiterhelfen könnte.
Danke!

LG
Christian

        
Bezug
Gal.G. v. f über K,[L:K] Best.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 04.12.2008
Autor: felixf

Hallo Christian

> also ich schaue mir gerade ein Beispiel zum Thema
> Galoisgruppen von Gleichungen an(Bosch, S.160) und zwar
> soll [mm]f=X^3+aX+b \in[/mm] K[X] mit char [mm]K\not=2,3[/mm] und [mm]a\not=0[/mm]
> sein. Somit ist f irreduzibel über K und separabel.

Warum sollte es irreduzibel sein? Waehle etwa $a = -1$ und $b = 0$, dann ist [mm] $X^3 [/mm] + a X + b = [mm] X^3 [/mm] - X = X [mm] \cdot [/mm] (X + 1) [mm] \cdot [/mm] (X - 1)$.

> L sei
> Zerfällungskörper von f über K. [mm]c,d\in[/mm] L  seien Nullstelle
> von f. Gesucht ist nun [L:K]. Im Bosch steht nun, dass
> entweder [L:K]=3 oder [L:K]=6 ist.
>  Warum ?
>  Meine Überlegungen dazu:
>  Also mir ist klar, dass [K(c):K]=3, da f MiPo von c über
> K.
>  [L:K]=[K(c,d):K(c)]*3 nach Gradformel

Genau.

>  Es gilt ja sicher [mm]grad(MiPo(d)/K(c))\le[/mm] grad(MiPo(d)/K)
> Aber warum gilt dann wirklich "<" ? Weil das MiPo von d
> über K eine Nullstelle in K(c) besitzt ?

Nun, du kannst ja $f$ durch $x - c$ teilen; dies ist dann ein Polynom mit Koeffizienten in $K(c)$, welches $d$ immer noch als Nullstelle hat. Und es gilt [mm] $\deg \frac{f}{x - c} [/mm] = 2$. Also muss der Grad von $MiPi(d)/K(c)$ kleinergleich 2 sein.

LG Felix


Bezug
                
Bezug
Gal.G. v. f über K,[L:K] Best.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Do 04.12.2008
Autor: Fry

Wunderbar, wie ichs mir gedacht hatte, dank dir !

VLG
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]