Funktionsuntersuchung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:02 So 23.10.2005 | Autor: | mathass |
Guten Morgen erst einmal.
Habe hier die Funktion [mm] 2x^3-3kx^2+k^3 [/mm] Dies soll eine Funtionsschar sein.
Soll diese auf Nullstellen, Extrempunkte, Wendestellen hin untersuchen.
Weiß im Grunde gemommne auch wie da sgeht, nur hier habe ich das Problem, dass ich nicht weiß, wie ich es auflöse nach x sobald ich f(x)=0 setze und
[mm] 2x^3-3kx^2+k^3 [/mm] =0 habe
Wie löse ich DAS denn nun auf ??? Wenn bei k kein x steht und man nicht ausklammern kann! Polynomdivision komm ich auch nich weiter. Suche nach Lösungsvorschägen,w äre euch sehr sehr dankbar für Ideen. Danke im Voraus! pinky
ach ja k ist ein Elemnet der realen Zahlen.
.Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo mathass,
> Habe hier die Funktion [mm]2x^3-3kx^2+k^3[/mm] Dies soll eine
> Funtionsschar sein.
> Soll diese auf Nullstellen, Extrempunkte, Wendestellen hin
> untersuchen.
> Weiß im Grunde gemommne auch wie da sgeht, nur hier habe
> ich das Problem, dass ich nicht weiß, wie ich es auflöse
> nach x sobald ich f(x)=0 setze und
> [mm]2x^3-3kx^2+k^3 = 0[/mm] habe
> Wie löse ich DAS denn nun auf ??? Wenn bei k kein x steht
> und man nicht ausklammern kann! Polynomdivision komm ich
> auch nich weiter. Suche nach Lösungsvorschägen,w äre euch
> sehr sehr dankbar für Ideen. Danke im Voraus! pinky
> ach ja k ist ein Element der reellen Zahlen.
Zeichne diese Funktion für $k [mm] \in \left\{0, \pm 1,\dotsc, \pm 5\right\} \subset \mathbb{Z}$ [/mm] ein:
[Dateianhang nicht öffentlich]
Die entscheidenden Stellen habe ich rot umkringelt. Es fällt auf das für jeden [mm] $k\texttt{-Wert}$ [/mm] aus der obigen Menge $f(k) = [mm] 0\!$ [/mm] ist. Man könnte daher vermuten, daß dies für alle reellen [mm] $k\!$ [/mm] gilt. Einsetzen ergibt:
$f(k) = [mm] 2k^3 [/mm] - [mm] 3kk^2 [/mm] + [mm] k^3 [/mm] = [mm] 2k^3 [/mm] - [mm] 3k^3 [/mm] + [mm] k^3 [/mm] = 0$
Die Vermutung ist hier also Tatsache. Daher können wir jetzt mit der Polynomdivision weitermachen:
[Dateianhang nicht öffentlich]
Kommst Du damit weiter?
Viele Grüße
Karl
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich] Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:00 So 23.10.2005 | Autor: | Loddar |
Hallo ...
Da hat sich bei Karl's Poynomdivision leider das kleine (Tipp-)Fehler-Teufelchen eingeschlichen ...
Das Ergebnis muss natürlich lauten: [mm] $2x^2 [/mm] - kx - \ [mm] \red{k}^2$ [/mm] .
Gruß
Loddar
|
|
|
|