www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Fr 09.10.2009
Autor: matherein

Aufgabe
Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall.

Hallo an alle Forenmitglieder,

ich habe eine Frage zu den Extremstellen:

Notwendige Bedingung ist ja: 6 [mm] cos(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] (2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi. [/mm] Dann müsste doch [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0 [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=\pi. [/mm]
Im Buch steht aber: Im Intervall [mm] [0;\pi) [/mm] liegen also die Stellen [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2}. [/mm]

Was habe ich falsch gerechnet?

Danke im Voraus
matherein

        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Fr 09.10.2009
Autor: MathePower

Hallo matherein,

> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
>  Hallo an alle Forenmitglieder,
>  
> ich habe eine Frage zu den Extremstellen:
>
> Notwendige Bedingung ist ja: 6 [mm]cos(2x-\bruch{\pi}{2})=0[/mm] ist
> erfüllt für alle x [mm]\in \IR[/mm] mit
> [mm](2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi.[/mm] Dann müsste doch
> [mm]x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0[/mm] und
> [mm]x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2}[/mm]
> und [mm]x_{5}=\pi.[/mm]
>  Im Buch steht aber: Im Intervall [mm][0;\pi)[/mm] liegen also die
> Stellen [mm]x_{4}=0[/mm] und [mm]x_{5}=\bruch{\pi}{2}.[/mm]
>  
> Was habe ich falsch gerechnet?


Die Rechnung ist richtig.

Die Funktion [mm]3sin(2x-\bruch{\pi}{2})[/mm] ist [mm]\pi[/mm]-periodisch.
Damit beschränkt sich die Untersuchung auf ein Intervall der Länge [mm]\pi[/mm].


>  
> Danke im Voraus
>  matherein


Gruss
MathePower

Bezug
                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 10.10.2009
Autor: matherein

Hallo Mathepower,

sorry, ich habe mich wohl nicht klar genug ausgedrückt, denn um das Intervall geht es mir gar nicht. Meine Frage ist eher, welche x-Stellen nun richtig sind. Ist wie ich es ausgerechnet habe  [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0, [/mm] also [mm] x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi, [/mm] also [mm] x_{5}=\pi [/mm] oder ist wie im Buch steht [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] richtig?
Falls du meintest, dass die Rechnung aus dem Lösungsbuch die Richtige ist, wie ist dann der Rechenweg, um auf [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] zu kommen?




Bezug
                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 10.10.2009
Autor: steppenhahn

Hallo matherein,

du sollst die Funktion ja in einem geeigneten Intervall untersuchen. Die Funktion hat die Periode [mm] \pi, [/mm] und in deinem Buch wird nun davon ausgegangen, dass das Intervall [mm] [0,\pi) [/mm] dann das sinnvollste Intervall zum Untersuchen ist.

Genau wie du haben sie in dem Buch dann festgestellt, dass

[mm] $2x-\frac{\pi}{2} [/mm] = [mm] \frac{\pi}{2}+k*\pi$ [/mm]

für Extremstellen erfüllt sein muss, also

$x = [mm] \frac{(k+1)}{2}*\pi [/mm] = [mm] \frac{m}{2}*\pi\quad\quad \mbox{ mit } m\in\IZ$ [/mm]

D.h. ..., [mm] -\frac{\pi}{2},0,\frac{\pi}{2},\pi, \frac{3}{2}*\pi, [/mm] ...
all das sind Nullstellen von der Funktion. Und je nachdem, welches Intervall man jetzt wählt, sind entweder 0 und [mm] \frac{\pi}{2} [/mm] (wie im Buch) oder [mm] \frac{\pi}{2} [/mm] und [mm] \pi [/mm] (wie bei dir, wenn du als zu untersuchendes Intervall [mm] \left[\frac{\pi}{2},\frac{3}{2}*\pi\right] [/mm] ausgesucht hast) oder  ... als Extremstellen richtig.
Du musst eben nur klar am Anfang sagen, in welchem Intervall du arbeitest.

Grüße,
Stefan

Bezug
                                
Bezug
Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Di 13.10.2009
Autor: matherein

Hallo Stefan,

danke für die ausführliche Erklärung. Jetzt habe ich es denke ich einigermaßen verstanden!

Gruß
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]