Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall. |
Hallo an alle Forenmitglieder,
ich habe eine Frage zu den Extremstellen:
Notwendige Bedingung ist ja: 6 [mm] cos(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] (2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi. [/mm] Dann müsste doch [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0 [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=\pi.
[/mm]
Im Buch steht aber: Im Intervall [mm] [0;\pi) [/mm] liegen also die Stellen [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2}.
[/mm]
Was habe ich falsch gerechnet?
Danke im Voraus
matherein
|
|
|
|
Hallo matherein,
> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
> Hallo an alle Forenmitglieder,
>
> ich habe eine Frage zu den Extremstellen:
>
> Notwendige Bedingung ist ja: 6 [mm]cos(2x-\bruch{\pi}{2})=0[/mm] ist
> erfüllt für alle x [mm]\in \IR[/mm] mit
> [mm](2x-\bruch{\pi}{2})=\bruch{\pi}{2}+k\pi.[/mm] Dann müsste doch
> [mm]x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0[/mm] und
> [mm]x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi. x_{4}=\bruch{\pi}{2}[/mm]
> und [mm]x_{5}=\pi.[/mm]
> Im Buch steht aber: Im Intervall [mm][0;\pi)[/mm] liegen also die
> Stellen [mm]x_{4}=0[/mm] und [mm]x_{5}=\bruch{\pi}{2}.[/mm]
>
> Was habe ich falsch gerechnet?
Die Rechnung ist richtig.
Die Funktion [mm]3sin(2x-\bruch{\pi}{2})[/mm] ist [mm]\pi[/mm]-periodisch.
Damit beschränkt sich die Untersuchung auf ein Intervall der Länge [mm]\pi[/mm].
>
> Danke im Voraus
> matherein
Gruss
MathePower
|
|
|
|
|
Hallo Mathepower,
sorry, ich habe mich wohl nicht klar genug ausgedrückt, denn um das Intervall geht es mir gar nicht. Meine Frage ist eher, welche x-Stellen nun richtig sind. Ist wie ich es ausgerechnet habe [mm] x_{4}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+0, [/mm] also [mm] x_{4}=\bruch{\pi}{2} [/mm] und [mm] x_{5}=2x-\bruch{\pi}{2}=\bruch{\pi}{2}+\pi, [/mm] also [mm] x_{5}=\pi [/mm] oder ist wie im Buch steht [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] richtig?
Falls du meintest, dass die Rechnung aus dem Lösungsbuch die Richtige ist, wie ist dann der Rechenweg, um auf [mm] x_{4}=0 [/mm] und [mm] x_{5}=\bruch{\pi}{2} [/mm] zu kommen?
|
|
|
|
|
Hallo matherein,
du sollst die Funktion ja in einem geeigneten Intervall untersuchen. Die Funktion hat die Periode [mm] \pi, [/mm] und in deinem Buch wird nun davon ausgegangen, dass das Intervall [mm] [0,\pi) [/mm] dann das sinnvollste Intervall zum Untersuchen ist.
Genau wie du haben sie in dem Buch dann festgestellt, dass
[mm] $2x-\frac{\pi}{2} [/mm] = [mm] \frac{\pi}{2}+k*\pi$
[/mm]
für Extremstellen erfüllt sein muss, also
$x = [mm] \frac{(k+1)}{2}*\pi [/mm] = [mm] \frac{m}{2}*\pi\quad\quad \mbox{ mit } m\in\IZ$
[/mm]
D.h. ..., [mm] -\frac{\pi}{2},0,\frac{\pi}{2},\pi, \frac{3}{2}*\pi, [/mm] ...
all das sind Nullstellen von der Funktion. Und je nachdem, welches Intervall man jetzt wählt, sind entweder 0 und [mm] \frac{\pi}{2} [/mm] (wie im Buch) oder [mm] \frac{\pi}{2} [/mm] und [mm] \pi [/mm] (wie bei dir, wenn du als zu untersuchendes Intervall [mm] \left[\frac{\pi}{2},\frac{3}{2}*\pi\right] [/mm] ausgesucht hast) oder ... als Extremstellen richtig.
Du musst eben nur klar am Anfang sagen, in welchem Intervall du arbeitest.
Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:39 Di 13.10.2009 | Autor: | matherein |
Hallo Stefan,
danke für die ausführliche Erklärung. Jetzt habe ich es denke ich einigermaßen verstanden!
Gruß
matherein
|
|
|
|