Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall. |
Hallo an alle Forenmitglieder,
Als Antwort steht im Lösungsbuch:
1. Periodenlänge:
Sie Sinusfunktion hat die Periodenlänge [mm] 2\pi; x_{1} [/mm] und [mm] x_{2} [/mm] markieren Anfang und Ende einer Periode, wenn gilt: [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi. [/mm] Wie komme ich auf die Bedingung [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi?
[/mm]
Mit [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{2}=\bruch{5}{4}\pi [/mm] ergibt sich die Periodenlänge p = [mm] x_{2}-x_{1}=\pi. [/mm] Es genügt also, f auf dem Intervall [mm] [0;\pi) [/mm] zu untersuchen.
2. Nullstellen:
[mm] 3sin(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] 2x-\bruch{\pi}{2}=k\pi [/mm] bzw. x= [mm] (2k+1)\bruch{\pi}{4} [/mm] (k [mm] \in \IZ). [/mm] Im Intervall [mm] [0;\pi) [/mm] liegen also die Nullstellen [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi. [/mm]
Hier weiß ich nicht nur nicht wie man auf die Bedingung kommt, sondern auch auf x= [mm] (2k+1)\bruch{\pi}{4} [/mm] und [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi.
[/mm]
Danke im Voraus für die Mühe
matherein
|
|
|
|
Hi matherein,
> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
> Hallo an alle Forenmitglieder,
>
> Als Antwort steht im Lösungsbuch:
> 1. Periodenlänge:
> Sie Sinusfunktion hat die Periodenlänge [mm]2\pi; x_{1}[/mm] und
> [mm]x_{2}[/mm] markieren Anfang und Ende einer Periode, wenn gilt:
> [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und [mm]2x_{2}-\bruch{\pi}{2}=2\pi.[/mm] Wie
> komme ich auf die Bedingung [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und
> [mm]2x_{2}-\bruch{\pi}{2}=2\pi?[/mm]
Für $\ f(x) = [mm] \sin(x) [/mm] $ sind die Intervallränder von $\ [mm] [0,2\pi)$ [/mm] offensichtlich $\ [mm] x_1 [/mm] = 0$, $\ [mm] x_2 [/mm] = [mm] 2\pi$
[/mm]
Hier geht es um die Funktion $\ f(x) = [mm] 3\sin(2x-\frac{\pi}{2}) [/mm] $
Du kannst Substituieren mit $\ z = [mm] 2x-\frac{\pi}{2}$ [/mm] und erhältst
$\ f(z) = [mm] 3\sin(z) [/mm] $.
Im Intervall $\ [0, [mm] 2\pi)$ [/mm] sind die Intervallränder nun $\ [mm] z_1 [/mm] = 0$, $\ [mm] z_2 [/mm] = [mm] 2\pi$
[/mm]
Durch Rücksubstitution erhältst Du $\ [mm] z_1 [/mm] = [mm] 2x_1-\frac{\pi}{2} [/mm] $ und $\ [mm] z_2 =x_2-\frac{\pi}{2} [/mm] $
$\ [mm] z_1 [/mm] = 0 [mm] \gdw 2x_1-\frac{\pi}{2} [/mm] = 0$
$\ [mm] z_2 [/mm] = 0 [mm] \gdw 2x_2-\frac{\pi}{2} [/mm] = 0$
> Mit [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{2}=\bruch{5}{4}\pi[/mm] ergibt
> sich die Periodenlänge p = [mm]x_{2}-x_{1}=\pi.[/mm] Es genügt
> also, f auf dem Intervall [mm][0;\pi)[/mm] zu untersuchen.
>
> 2. Nullstellen:
> [mm]3sin(2x-\bruch{\pi}{2})=0[/mm] ist erfüllt für alle x [mm]\in \IR[/mm]
> mit [mm]2x-\bruch{\pi}{2}=k\pi[/mm] bzw. x= [mm](2k+1)\bruch{\pi}{4}[/mm] (k
> [mm]\in \IZ).[/mm] Im Intervall [mm][0;\pi)[/mm] liegen also die Nullstellen
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]
> Hier weiß ich nicht nur nicht wie man auf die Bedingung
> kommt, sondern auch auf x= [mm](2k+1)\bruch{\pi}{4}[/mm] und
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]
Wir schauen uns zunächst wieder $\ f(x) [mm] =\sin(x) [/mm] $ an und wissen, dass die Nullstellen immer 0 und dann ganzzahlige Vielfache von $\ [mm] \pi [/mm] $ sind.
Also $\ f(x) = [mm] \sin(x) [/mm] = 0$ mit [mm] $x_k [/mm] = 0, [mm] \pi, 2\pi, 3\pi,... [/mm] $
Ist ein Intervall wie $\ [0, [mm] \pi)$ [/mm] gegeben, so finden wir hier nur die ersten beiden Nullstellen mit $\ [mm] x_1 [/mm] = 0$ und $\ [mm] x_2 [/mm] = [mm] \pi$
[/mm]
Allerdings haben wir erneut die die Funktion [mm] f(x)=3sin(2x-\bruch{\pi}{2}) [/mm] und subsitutieren $\ z = [mm] 2x-\bruch{\pi}{2}$
[/mm]
Das ist im Grunde das selbe, wie oben.
$\ f(z) = 0 [mm] \gdw 2x_1-\bruch{\pi}{2} [/mm] = 0\ [mm] \wedge [/mm] \ [mm] 2x_2-\bruch{\pi}{2} =\pi [/mm] $
1. Nullstelle
$\ [mm] 2x_1-\bruch{\pi}{2} [/mm] = 0 [mm] \gdw 2x_1 [/mm] = [mm] \bruch{\pi}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}:\frac{2}{1} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}*\frac{1}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{4} [/mm] = [mm] \bruch{1}{4}\pi [/mm] $
2. Nullstelle
$\ [mm] 2x_2-\bruch{\pi}{2} =\pi \gdw 2x_2 =\pi +\bruch{\pi}{2} \gdw 2x_2 =\frac{\pi}{1} +\bruch{\pi}{2} \gdw 2x_2 =\frac{2\pi}{2} +\bruch{\pi}{2}\gdw 2x_2 =\frac{3\pi}{2} \gdw x_2 =\frac{3\pi}{2}:\frac{2}{1}\gdw x_2 =\frac{3\pi}{2}*\frac{1}{2} \gdw x_2 =\frac{3\pi}{4} [/mm] = [mm] \frac{3}{4}\pi$
[/mm]
>
> Danke im Voraus für die Mühe
> matherein
Hoffe, dass dir das hilft. Frag ruhig, wenn was unklar sein sollte.
Grüße
ChopSuey
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:15 Do 08.10.2009 | Autor: | matherein |
Guten Abend ChopSuey,
vielen Dank für die ausführliche Erklärung. Ich konnte alles gut nachvollziehen!
LG
matherein
|
|
|
|