www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 So 15.10.2006
Autor: herzmelli

Aufgabe
[mm] \bruch{4}{x}-1 [/mm] + [mm] ln\bruch{x}{4} [/mm]

Meine Frage an euch.

Kann mir jemand auf die Sprünge helfen wie ich am besten die Ableitungen
bilde?
Kann man die Produktregel anwenden?

Lg Melanie

        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 15.10.2006
Autor: M.Rex

Hallo

> [mm]\bruch{4}{x}-1[/mm] + [mm]ln\bruch{x}{4}[/mm]

> Kann mir jemand auf die Sprünge helfen wie ich am besten
> die Ableitungen
>  bilde?
>  Kann man die Produktregel anwenden?
>  
> Lg Melanie

Die ist hier nicht nötig.


[mm] f(x)=\bruch{4}{x}-1+ln(\bruch{x}{4}) [/mm]
[mm] =4x^{-1}-1+ln(\bruch{x}{4}) [/mm]

Also (im ln-Teil brauchst du die Kettenregel)

[mm] f'(x)=4*(-1)*x^{-1-1}-0+\bruch{1}{\bruch{x}{4}}*\bruch{1}{4} [/mm]
[mm] =-4x^{-2}+\bruch{4}{4x} [/mm]
[mm] =-\bruch{4}{x²}+\bruch{1}{x} [/mm]
Wenn du die nächsten Ableitungen brauchst,
[mm] (=-4x^{-2}+x^{-1}) [/mm]

Marius




Bezug
                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 So 15.10.2006
Autor: herzmelli

Hi Marius,
Die Kettenregel ist für mich der Horror,ich komme damit einfach nicht klar
Dein Ergebnis ist vollkommen richtig

[mm] f(x)=\bruch{4}{x} f'(x)=\bruch{-4}{x^2} [/mm]

kann ich noch nachvollziehen,aber den rest nicht.
Kannst du mir das mal für blöde erklären?
Lg

Bezug
                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 15.10.2006
Autor: M.Rex

Ich versuche es mal

Wenn ich eine "verschachtelte" Funktion ableiten will, brauche ich halt die Kettenregel.

Also

f(g(x))'=f'(g(x))*g'(x)

Also in deinem Fall

[mm] ln(\bruch{x}{4})' [/mm]

Hier ist f(y)=ln(y)
und [mm] g(x)=\bruch{x}{4}=\bruch{1}{4}x [/mm]

Also sind die Ableitungen
[mm] f'(y)=\bruch{1}{y} [/mm]
und [mm] g'(x)=\bruch{1}{4} [/mm]
Also ist
f'(g(x))*g'(x)
[mm] =\bruch{1}{g(x)}*\bruch{1}{4} [/mm]
[mm] =\bruch{1}{\bruch{x}{4}}*\bruch{1}{4} [/mm]
[mm] =\bruch{\not4}{x}*\bruch{1}{\not4} [/mm]
[mm] =\bruch{1}{x} [/mm]

Marius

Bezug
                                
Bezug
Funktionsuntersuchung: Danke Marius
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 So 15.10.2006
Autor: herzmelli

Danke super erklärt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]