www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionsschar
Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Nachweiß
Status: (Frage) beantwortet Status 
Datum: 14:52 So 08.10.2006
Autor: blank

Aufgabe
fa(x)=e^(2x)-2ae^(x)+(3/4)a²

Weisen Sie nach, dass in Abhängigkeit vom Wert des parameters a für a>0 jede reelle Zahl Nullstelle einer funktion fa sein kann

Hoffe mir kann einer dabei helfen

dank im vorraus an alle die sich daran versuchen



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsschar: Substitution
Status: (Antwort) fertig Status 
Datum: 15:19 So 08.10.2006
Autor: zetamy

Hallo,

Um die Nullstellen einer Funktion zu bestimmen, musst du die Funktion gleich null setzen - aber ich denke, dass weißt du ;-) .
Deine Funkion kannst du mit der pq-Formel bearbeiten, vorher lohnt sich jedoch eine Substitution.

[mm] f_a(x)=e^{2x}-2a*e^x+\bruch{3}{4}a^2=(e^x)^2+2a*e^x+\bruch{3}{4}a^2[/mm]

Durch diese Umformung wird es deutlicher, dass du die pq-Formel anwenden kannst. Nun musst du noch definieren [mm]e^x=z[/mm]:

[mm] f_a(x)=z^2-2a*z+\bruch{3}{4}a^2=0[/mm]

Diese Gleichung müsstest du nun selbst lösen können.

Gruß, zetamy.


Bezug
                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 08.10.2006
Autor: blank

Wie ich auf die Nullstelle komme hatte ich auch schon herrausgefunen. hätte ich vieleicht dazuschreiben sollen... aber damit ist der Nachweiß ja leider noch nicht erklärt   und da komme ich nicht weiter



Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 So 08.10.2006
Autor: zetamy

Du musst die Werte für die Nullstellen natürlich wieder re-substituieren:

[mm]z_1=\bruch{3}{2}*a \Rightarrow e^{x_1}=\bruch{3}{2}*a[/mm]

[mm]z_2=\bruch{1}{2}*a \Rightarrow e^{x_2}=\bruch{1}{2}*a[/mm]

Wenn du nun die einzelnen Gleichungen logarithmierst, erhälst du

[mm]x_1=ln(\bruch{3}{2}*a)[/mm] und [mm]x_2=ln(\bruch{1}{2}*a)[/mm]; mit a>0, da die Logarithmusfunktionen (log(x)) nur für x>0 definiert sind.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]