www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionsgleichung bestimmen
Funktionsgleichung bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichung bestimmen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 18.05.2013
Autor: ebarni

Aufgabe
Eine ganzrationale Funktion dritten Grades ist symmetrisch zum Ursprung des Koordinatensystems und hat den Tiefpunkt (1|-2). Wie lautet die Funktionsgleichung?

Also mein Ansatz ist folgender:

f(x) = [mm] ax^{3}+bx^{2}+cx+d [/mm]

Da es sich um eine punktsymmetrische Funktion handelt, gibt es nur ungerade Exponenten:

f(x) = [mm] ax^{3}+cx+d [/mm]

1. Die erste Ableitung der Funktion muss an der Stelle 1 Null ergeben:

f'(x) = [mm] 3ax^{2}+c [/mm]

f'(1) = 0 also

(I) f'(1) = 3a +c = 0

2. Die Ursprungsfunktion ist an der Stelle 1 gleich -2

f(1) = -2

(II) f(1) = a + c + d = -2

Und jetzt weiß ich nicht mehr weiter. Wenn ich (I) nach c auflöse und dann in (II) einsetze, habe ich immer noch eine Unbekannte zuviel. Hier fehlt mir noch eine dritte Gleichung, oder?

Danke für eure Tipps ;-)

ebarni

        
Bezug
Funktionsgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Sa 18.05.2013
Autor: Diophant

Hallo,

> Eine ganzrationale Funktion dritten Grades ist symmetrisch
> zum Ursprung des Koordinatensystems und hat den Tiefpunkt
> (1|-2). Wie lautet die Funktionsgleichung?
> Also mein Ansatz ist folgender:

>

> f(x) = [mm]ax^{3}+bx^{2}+cx+d[/mm]

>

> Da es sich um eine punktsymmetrische Funktion handelt, gibt
> es nur ungerade Exponenten:

>

> f(x) = [mm]ax^{3}+cx+d[/mm]

falsch:

[mm] f(x)=ax^3+cx [/mm]

enthält nur ungerade Exponenten, das d steht aber für

[mm] d=d*x^0 [/mm]

und damit für einen geraden Exponenten. Abgesehen davon macht man sich leicht klar, dass d=0 gelten muss, und zwar damit das Schaubild überhaupt durch den Ursprung verläuft.

>

> 1. Die erste Ableitung der Funktion muss an der Stelle 1
> Null ergeben:

>

> f'(x) = [mm]3ax^{2}+c[/mm]

>

> f'(1) = 0 also

>

> (I) f'(1) = 3a +c = 0

Das stimmt. [ok]

>

> 2. Die Ursprungsfunktion ist an der Stelle 1 gleich -2

>

> f(1) = -2

>

> (II) f(1) = a + c + d = -2

>

> Und jetzt weiß ich nicht mehr weiter...

Siehe oben. :-)


Gruß, Diophant

Bezug
                
Bezug
Funktionsgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Sa 18.05.2013
Autor: ebarni

Hallo Diophant, vielen Dank für Deine schnelle Antwort.

Also ist es:

3a +c = 0 --> c = -3a

eingesetzt in (II):

a + c = -2 also

a - 3a = -2 --> a = 1

eingesetzt in (I):

c = -3

insgesamt also lautet die Funktionsgleichung:

f(x) = [mm] x^{3} [/mm] - 3x

Probe:

f(1) = -2 stimmt


Bezug
                        
Bezug
Funktionsgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 18.05.2013
Autor: Diophant

Hallo,

> Also ist es:

>

> 3a +c = 0 --> c = -3a

>

> eingesetzt in (II):

>

> a + c = -2 also

>

> a - 3a = -2 --> a = 1

>

> eingesetzt in (I):

>

> c = -3

>

> insgesamt also lautet die Funktionsgleichung:

>

> f(x) = [mm]x^{3}[/mm] - 3x

>

> Probe:

>

> f(1) = -2 stimmt

Alles richtig. [ok]


Gruß, Diophant

Bezug
                                
Bezug
Funktionsgleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Sa 18.05.2013
Autor: ebarni

Hallo Diophant, alles klar vielen Dank nochmal für Deine schnelle Hilfe!!!!!

ebarni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]