www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktionsgl. rekonstruieren
Funktionsgl. rekonstruieren < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgl. rekonstruieren: einzelnen Gleichungen aufstel.
Status: (Frage) beantwortet Status 
Datum: 17:55 Di 20.09.2005
Autor: shuffle

Hallo,
ich muss eine Funktion 4. Grades rekonstruieren. Die allg. Form ist mir bekannt:

[mm] f(x)=ax^{4} [/mm] + [mm] bx^{3} [/mm] + cx² + dx + e

die geg. Information sind für mich zum lösen nicht gerade aufschlussreich:


->im Koordinatenursprung (also P(0|0)) gibt es ein Sattelpunkt (also parallel zur y-Achse)=Wendestelle?!

->schneidet x-Achse bei P (2|0) und schließt mit der x-Achse eine Fläche mit dem Flächeninhalt 8 ein.

Mir liegt auch eine Skizze vor, auf der der Funktionsgraph nach unten geöffnet, die x-Achse schneidet (die Fläche zw. den beiden Nullstellen soll 8 FE ergeben).

Ich weiss schon das ich mehrere Gleichungen aufstellen muss(ausgehend von Extremstellen und Wendestellen, also mit Hilfe der 1. und 2. Ableitung) , die ich dann durch das Additionsverfahren lösen kann, nur weiss ich nicht wie ich dort hin gelange.

Also wenn mit jemand Ansätze zum Lösen  geben könnte wäre ich sehr dankbar.

gruß shuffle

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt. >nur in diesem Forum!<


        
Bezug
Funktionsgl. rekonstruieren: Steckbriefaufgaben
Status: (Antwort) fertig Status 
Datum: 18:26 Di 20.09.2005
Autor: informix

Hallo Shuffle,
[willkommenmr]

> Hallo,
>  ich muss eine Funktion 4. Grades rekonstruieren. Die allg.
> Form ist mir bekannt:
>  
> [mm]f(x)=ax^{4} + bx^{3} + cx^2 + dx + e[/mm]
>  
> die geg. Information sind für mich zum lösen nicht gerade
> aufschlussreich:
>  
>
> ->im Koordinatenursprung (also P(0|0)) gibt es ein
> Sattelpunkt (also parallel zur y-Achse)=Wendestelle?!
>  
> ->schneidet x-Achse bei P (2|0) und schließt mit der
> x-Achse eine Fläche mit dem Flächeninhalt 8 ein.

Die Lösung verläuft wie bei allen MBSteckbriefaufgaben [<-- click it!]
Im Text sind 5 Gleichungen versteckt, die du ermitteln solltest und deren Lösung du bestimmt heraus bekommst.

(0/0) Sattelpunkt:
(1) f(0) = 0 [mm] \gdw [/mm] Punkt auf dem Graphen
(2) f'(0) = 0 [mm] \gdw [/mm] waagerechte Tangente
(3) f''(0) = 0 [mm] \gdw [/mm] Wendepunkt
(4) [mm] x_N=2 [/mm] ist Nullstelle
(5) [mm] $|\integral_{\mbox{linke Nullstelle}}^{\mbox{rechte Nullstelle}}{f(x) dx}| [/mm] = 8$

setze diese Eigenschaften mal in Gleichungen für die Koeffizienten a,b,..,e um und löse dann dieses Gleichungssystem.
Wenn du uns hier zeigst, was du rechnest, schau'n wir mal drüber und bestätigen deine Gedanken. ;-)

>  
> Mir liegt auch eine Skizze vor, auf der der Funktionsgraph
> nach unten geöffnet, die x-Achse schneidet (die Fläche zw.
> den beiden Nullstellen soll 8 FE ergeben).
>  
> Ich weiss schon das ich mehrere Gleichungen aufstellen
> muss(ausgehend von Extremstellen und Wendestellen, also mit
> Hilfe der 1. und 2. Ableitung) , die ich dann durch das
> Additionsverfahren lösen kann, nur weiss ich nicht wie ich
> dort hin gelange.

Poste mal deine Gleichungen!
Aus den ersten 4 Gleichungen kannst du f bis auf einen Koeffizienten bestimmen,
die Nullstellen hängen dann noch von diesem Koeffizienten ab, den du dann mit der Fläche errechnen kannst.

>  
> Also wenn mit jemand Ansätze zum Lösen  geben könnte wäre
> ich sehr dankbar.
>  

Klar(er)?


Bezug
                
Bezug
Funktionsgl. rekonstruieren: Danke+Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Mi 21.09.2005
Autor: shuffle

hi informix,
erst einmal vielen Dank für die Hilfe..
bin nun auch auf die lösung gekommen..

f(0)=0 - e=0
f '(0)=0 - d=0
f "(0)=0 - c=0
f(2)=0 - 16a + 8b=0

um a und b zu ermitteln musste ich dann noch in den grenzen 2 und 0 integrieren:  [mm] \bruch{32}{5}a [/mm] + 4b=8, dann Additionsverfahren mit
16a + 8b=0

Lösung: [mm] f(x)=-5x^{4} [/mm] + [mm] 10x^{3} [/mm]

gruß shuffle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]