www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar mit ln(x)
Funktionenschar mit ln(x) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar mit ln(x): Nullstellen
Status: (Frage) beantwortet Status 
Datum: 16:53 Do 21.02.2013
Autor: Luisc

Aufgabe
[mm] (ln(x))^2 [/mm] + t* ln(x) = 0

Hallo zusammen,
Von der Funktionenschar oben möchte ich die Nullstellen bilden.
Nur da die beiden Terme nicht multipliziert werden, sondern addiert, weiß ich leider nicht wirklich wie ich das anstellen soll. Irgendwie sehe ich keinen Sinn irgendetwas auf die andere Seite zu bringen oder sehe ich das falsch?
Ich weiß bereits,dass die Lösung x = 1 v x = [mm] 1/e^t [/mm] ist verstehe allerdings nicht wie man darauf kommen sollte.

Und noch eine Frage: Wie wird [mm] (ln(x)^2) [/mm] abgeleitet?  Einfach [mm] (1/x)^2, [/mm] also [mm] 1/x^2 [/mm] ?
Haben erst gerade mit Logarithmusfunktionen angefangen und bin noch sehr unerfahren, schon einmal vielen Dank im Vorraus.
Luisc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionenschar mit ln(x): Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Do 21.02.2013
Autor: Diophant

Hallo,

> [mm](ln(x))^2[/mm] + t* ln(x) = 0
> Hallo zusammen,
> Von der Funktionenschar oben möchte ich die Nullstellen
> bilden.
> Nur da die beiden Terme nicht multipliziert werden, sondern
> addiert, weiß ich leider nicht wirklich wie ich das
> anstellen soll. Irgendwie sehe ich keinen Sinn irgendetwas
> auf die andere Seite zu bringen oder sehe ich das falsch?


Nein, das siehst du richtig. Also müssen wir dafür sorgen, dass auf der linken Seite eine Multiplikation steht. Und das geht so:

[mm] ln(x)\left(ln(x)+t\right)=0 [/mm]

Jetzt kannst du mit dem Satz vom Nullprodukt die Gleichung lösen.

> Ich weiß bereits,dass die Lösung x = 1 v x = [mm]1/e^t[/mm] ist
> verstehe allerdings nicht wie man darauf kommen sollte.
>
> Und noch eine Frage: Wie wird [mm](ln(x)^2)[/mm] abgeleitet?
> Einfach [mm](1/x)^2,[/mm] also [mm]1/x^2[/mm] ?

Das ist missverständlich darum zwei Versionen:

[mm] \left(\left(ln(x)\right)^2\right)'=2*ln(x)*\bruch{1}{x}=\bruch{2ln(x)}{x} [/mm]

Oder:

[mm] \left(ln(x^2)\right)'=\left(2*ln(x)\right)'=\bruch{2}{x} [/mm]


Gruß, Diophant

Bezug
                
Bezug
Funktionenschar mit ln(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Do 21.02.2013
Autor: Luisc

Vielen lieben Dank für die Mühe!
Habe alles komplett verstanden und habe die Aufgabe fertig, also danke!

Gruß,
Luisc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]