www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar
Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 09.03.2009
Autor: learningboy

Hallo,

f(x) = [mm] (t-e^x)²+e^{2x} [/mm]

f'' an der Stelle ln t/2 soll t² sein.

f''(x) = [mm] 2e^x(4e^x [/mm] - t)

Nur trotz einsetzen, ich komme nicht auf t²...

Danke!

        
Bezug
Funktionenschar: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 09.03.2009
Autor: Loddar

Hallo learningboy!


Deine 2. Ableitung habe ich auch erhalten.

Bedenke, dass gilt:
[mm] $$e^{\ln\left(\bruch{t}{2}\right)} [/mm] \ = \ [mm] \bruch{t}{2}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 09.03.2009
Autor: learningboy

das wusste ich gar nicht.
wo kann ich solche regeln nachlesen?

danke!

Bezug
                        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 09.03.2009
Autor: Adamantin

Was schwebt dir denn als Quelle vor? Das sollte in jedem Mathebuch für die Oberstude stehen, zumindest beim Thema e-Funktionen, denn das ist eine elementare Rechenregel für den natürlichen Logarithmus. Du kannst es sicherlich auch hier unter vorwissen oder unter wiki nachschauen.

Aber du kannst es dir auch logisch herleiten, denn [mm] e^{ln(x)}=x [/mm] gilt deshalb, weil ln x ja bedeutet: welche Zahl muss ich in den Expononten von e schreiben, damit es x ergibt. nun steht da [mm] e^{ln(x)}, [/mm] das heißt, einmal bedeutet ln(x) eine Zahl, die e hoch diese Zahl x ergibt. außerdem steht dies aber im Exponenten von e. Das heißt, e hoch irgendeine Zahl soll x ergeben. DIese Zahl wird jetzt als Exponent von e eingesetzt und du hast genau den Ausdruck von ln(x).

Also ln(x)=y. Nächster Schritt einsetzen: [mm] e^y. [/mm] Nun ist aber [mm] e^y [/mm] genau x, denn ln(x)=y bedeutet ja [mm] e^y=x. [/mm] Damit hast du das Argument runtergeholt ^^.

Aber am besten auswendig lernen, verinnerlichen und bei Logarithmusgesetzen mal nachschauen, natürlich mit der Basis e.

Aber auch für normale gibt es sowas, z.B.

[mm] 10^{log(x)}=x [/mm] Also wenn Basis und Basis übereinstimmen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]