www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar
Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:17 Di 10.10.2006
Autor: kimnhi

Gegeben sei die Funktionsschar [mm] f(x)=\bruch{\log_2 x - p}{p*x}; [/mm] X e D; p e R+

a) Bestimme den maximalen Definitionsbereich D der Funktionenschar
b) Welche Nullstellen hat die Funktionenschar
c) Welchen Punkt haben alle Funktionen der Funktionenschar gemeinsam ?
d) Zeigen Sie, das der Punkt aus Teil c der einzige gemeinsame Punkt der Funktionenschar ist.
e) Skizziere den Graphen f für p = 2

Vielen Dank!Leider weiss ich nicht, wie man sowas bei einer Funktionenschar machen muss.

Um die Nullstellen ausrechnen zu können, müsste ich ja [mm] $\log_2 [/mm] x -p = 0$ rechnen.Aber wie geht das?Die restlichen Teile verstehe ich leider auch nicht und hoffe, dass mir jemand helfen kann;(


        
Bezug
Funktionenschar: Vorschläge
Status: (Antwort) fertig Status 
Datum: 09:46 Di 10.10.2006
Autor: statler

Guten Tag!

> Gegeben sei die Funktionsschar [mm]f(x)=\bruch{\log_2 x - p}{p*x};[/mm]
> X e D; p e R+
>
> a) Bestimme den maximalen Definitionsbereich D der
> Funktionenschar

Was kann denn schiefgehen? Man darf nicht durch 0 teilen, und es gibt keinen log von negativen Zahlen (inkl. 0).

> b) Welche Nullstellen hat die Funktionenschar

Da muß der Zähler 0 sein. Also Gleichung hinschreiben und lösen, indem man auf beiden Seiten '2 hoch' bildet.

> c) Welchen Punkt haben alle Funktionen der Funktionenschar
> gemeinsam ?

Wenn dir nix Besseres einfällt, erst e) erledigen, und zwar für 2 Werte von p, z. B. auch p = 1 oder p = 4. Wenn c) stimmt, muß es mind. einen Schnittpunkt geben.

> d) Zeigen Sie, das der Punkt aus Teil c der einzige
> gemeinsame Punkt der Funktionenschar ist.

Das müßte man aus der Zeichnung erkennen können. Wenn 2 Kurven der Schar nur einen gemeinsamen Punkt haben, können alle Kurven auch nicht mehr haben.

> e) Skizziere den Graphen f für p = 2

schon erledigt

Die zeichnerischen Ergebnisse mußt du natürlich nachrechnen! Die Zeichnung liefert nur den Ansatz.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]