www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Funktionenkp. in 2 Variablen
Funktionenkp. in 2 Variablen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenkp. in 2 Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:18 Fr 04.03.2011
Autor: Lippel

Aufgabe
Sei p prim, [mm] $L=\IF_p(X,Y)$ [/mm] der Funktionenkörper in zwei Variablen über [mm] $\IF_p$, $\sigma$ [/mm] der zugehörige Frobeniushomomorphismus: [mm] $\sigma: [/mm] L [mm] \to [/mm] L, a [mm] \mapsto a^p, \: K:=\sigma(L)$ [/mm]

Zeigen Sie: [mm] $L/K\:$ [/mm] ist nicht einfach. Berechnen Sie dazu [mm] $[L:K]\:$ [/mm] und [mm] $[L:K]_s$. [/mm]

Hallo,

sorry, dass das Algebraforum gerade so voll ist von meinen Fragen, aber ich komme mal wieder nicht weiter.

[mm] $\sigma$ [/mm] ist Automorphismus von [mm] $\IF_p$ [/mm] und somit gilt: [mm] $\sigma(L)=\IF_p(X^p,Y^p)$. [/mm]
Wir betrachten also die Erweiterung [mm] $\IF_p(X,Y)/\IF_p(X^p,Y^p)$ [/mm]
Es gilt [mm]min_K (X) = t^p-X^p \in K[t][/mm] und [mm]min_{K(X)}(Y) = t^p-Y^p \in K(X)[t][/mm]
[mm] $\Rightarrow [L:K]=p^2$, [/mm] da $[L:K]=[L:K(X)][K(X):K]$

Andererseits gilt: [mm] $[L:K]_s [/mm] = [mm] [L:K(X)]_s [K(X):K]_s [/mm] = 1 [mm] \cdot [/mm] 1$, denn da $L/K(X), [mm] K(X)/L\:$ [/mm] einfach, ist der Separabilitätsgrad dieser Erweiterungen gleich der Anzahl der verschiedenen Nullstellen des Minimalpolynoms.

Angenommen [mm] $L/K\:$ [/mm] einfach [mm] $\Rightarrow \exists \alpha \in [/mm] L: [mm] L=K(\alpha) \Rightarrow [/mm] [L:K] = [mm] p^r[L:K]_s$, [/mm] wobei [mm] $p^r$ [/mm] die Vielfachheit der Nullstelle [mm] $\alpha$ [/mm] des Minimalpolynoms von [mm] $\alpha$ [/mm] ist [mm] $\Rightarrow p^2 [/mm] = [mm] p^r \cdot [/mm] 1 [mm] \Rightarrow \ldots$ [/mm]

Ich sehe nicht, warum sich hier ein Widerspruch ergibt.

Vielen Dank für eure Hilfe!

LG Lippel

        
Bezug
Funktionenkp. in 2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Fr 04.03.2011
Autor: felixf

Moin!

> Sei p prim, [mm]L=\IF_p(X,Y)[/mm] der Funktionenkörper in zwei
> Variablen über [mm]\IF_p[/mm], [mm]\sigma[/mm] der zugehörige
> Frobeniushomomorphismus: [mm]\sigma: L \to L, a \mapsto a^p, \: K:=\sigma(L)[/mm]
>  
> Zeigen Sie: [mm]L/K\:[/mm] ist nicht einfach. Berechnen Sie dazu
> [mm][L:K]\:[/mm] und [mm][L:K]_s[/mm].
>  Hallo,
>  
> sorry, dass das Algebraforum gerade so voll ist von meinen
> Fragen, aber ich komme mal wieder nicht weiter.
>  
> [mm]\sigma[/mm] ist Automorphismus von [mm]\IF_p[/mm] und somit gilt:
> [mm]\sigma(L)=\IF_p(X^p,Y^p)[/mm].
>  Wir betrachten also die Erweiterung
> [mm]\IF_p(X,Y)/\IF_p(X^p,Y^p)[/mm]
>  Es gilt [mm]min_K (X) = t^p-X^p \in K[t][/mm] und [mm]min_{K(X)}(Y) = t^p-Y^p \in K(X)[t][/mm]
>  [mm]\Rightarrow [L:K]=p^2[/mm], da [mm][L:K]=[L:K(X)][K(X):K][/mm]
>  
> Andererseits gilt: [mm][L:K]_s = [L:K(X)]_s [K(X):K]_s = 1 \cdot 1[/mm], denn da [mm]L/K(X), K(X)/L\:[/mm] einfach, ist der Separabilitätsgrad dieser Erweiterungen gleich der Anzahl der verschiedenen Nullstellen des Minimalpolynoms.
>  
> Angenommen [mm]L/K\:[/mm] einfach [mm]\Rightarrow \exists \alpha \in L: L=K(\alpha) \Rightarrow [L:K] = p^r[L:K]_s[/mm], wobei [mm]p^r[/mm] die Vielfachheit der Nullstelle [mm]\alpha[/mm] des Minimalpolynoms von [mm]\alpha[/mm] ist [mm]\Rightarrow p^2 = p^r \cdot 1 \Rightarrow \ldots[/mm]
>  
> Ich sehe nicht, warum sich hier ein Widerspruch ergibt.

Es gilt [mm] $\alpha^p [/mm] = [mm] \sigma(\alpha) \in \sigma(L) [/mm] = K$, womit das MiPo von [mm] $\alpha$ [/mm] ueber $K$ ein Teiler von [mm] $t^p [/mm] - [mm] \sigma(\alpha) \in [/mm] K[t]$ ist.

(Wozu man hier [mm] $[L:K]_s$ [/mm] braucht weiss ich nicht...)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]