www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Funktionenfolge
Funktionenfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolge: Tipp + Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:11 Mo 15.04.2013
Autor: piriyaie

Aufgabe
[mm] \summe_{n=1}^{\infty} \bruch{n^{n}}{n!}*x^{n} [/mm]

Hallo,

ich möchte den Konvergenzradius der obigen Potenzreihe bestimmen. Hier mein Lösungsvorschlag:

[mm] \summe_{n=1}^{\infty} \bruch{n^{n}}{n!}*x^{n} [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{n^{n}*x^{n}}{n!} [/mm]

[mm] \Rightarrow |\bruch{\bruch{(n+1)^{(n+1)}*x^{(n+1)}}{(n+1)!}}{\bruch{n^{n}*x^{n}}{n!}}| [/mm] = [mm] |\bruch{(n+1)^{(n+1)}*x^{(n+1)}}{(n+1)!}*\bruch{n!}{n^{n}x^{n}}| [/mm] = [mm] |\bruch{(n+1)^{(n+1)}*x^{n}*x*n!}{n!*(n+1)*n^{n}*x^{n}} [/mm] | = | [mm] \bruch{(n+1)^{n}*(n+1)*x}{(n+1)*n^{n}}| [/mm] = [mm] |\bruch{(n+1)^{n}*x}{n^{n}}| [/mm] = [mm] |\bruch{n*(1+\bruch{1}{n})^{n}*x}{n*(1)^{n}}| [/mm] = [mm] |(1+\bruch{1}{n})^{n}*x| [/mm]

Und das geht ja dann gegen die zahl des heutigen geburtstagskindes euler :-D. oder???

Ist das richtig so?

Grüße
Ali



        
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 15.04.2013
Autor: Fulla


> [mm]\summe_{n=1}^{\infty} \bruch{n^{n}}{n!}*x^{n}[/mm]
> Hallo,

>

> ich möchte den Konvergenzradius der obigen Potenzreihe
> bestimmen. Hier mein Lösungsvorschlag:

>

> [mm]\summe_{n=1}^{\infty} \bruch{n^{n}}{n!}*x^{n}[/mm] =
> [mm]\summe_{n=1}^{\infty} \bruch{n^{n}*x^{n}}{n!}[/mm]

>

> [mm]\Rightarrow |\bruch{\bruch{(n+1)^{(n+1)}*x^{(n+1)}}{(n+1)!}}{\bruch{n^{n}*x^{n}}{n!}}|[/mm]
> =
> [mm]|\bruch{(n+1)^{(n+1)}*x^{(n+1)}}{(n+1)!}*\bruch{n!}{n^{n}x^{n}}|[/mm]
> = [mm]|\bruch{(n+1)^{(n+1)}*x^{n}*x*n!}{n!*(n+1)*n^{n}*x^{n}}[/mm] |
> = | [mm]\bruch{(n+1)^{n}*(n+1)*x}{(n+1)*n^{n}}|[/mm] =
> [mm]|\bruch{(n+1)^{n}*x}{n^{n}}|[/mm] =
> [mm]|\bruch{n*(1+\bruch{1}{n})^{n}*x}{n*(1)^{n}}|[/mm] =
> [mm]|(1+\bruch{1}{n})^{n}*x|[/mm]

>

> Und das geht ja dann gegen die zahl des heutigen
> geburtstagskindes euler :-D. oder???

>

> Ist das richtig so?

Ja. Beachte aber, dass die Reihe nur konvergiert, wenn der Ausdruck kleiner als 1 ist, d.h. wenn [mm]\lim_{n\to\infty}\left|\left(1+\frac 1n\right)^n\cdot x\right|<1[/mm]. Der Konvergenzradius ist also [mm]\frac 1e[/mm].

Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]