www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Funktionen injektiv usw. ?
Funktionen injektiv usw. ? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen injektiv usw. ?: Aufgaben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 09.09.2010
Autor: Prinzessin83

<DIV class=task>
Sind folgende Funktionen injektiv, surjektiv oder bijektiv. Kurz begründen.

[mm] $f_1: \IR^+ \to \IR^+_{0} [/mm] , [mm] x\mapsto x^{4}$ [/mm]
[mm] $f_2: \IR^{2} \to \IR^{2}, (x_{1},x_{2})\mapsto (-x_{1},-x_{2})$ [/mm]
[mm] $f_3: S_{4} \to \IN [/mm] , [mm] \sigma\mapsto \sigma(1)+\sigma(2)+\sigma(3)+\sigma(4)$ [/mm]

[mm] $f_4: \{(a,b) | a,b \in \{1,...,4\}, a b i=a
a i=b

Wusste hier nicht wie man die große Klammer macht.
</DIV>
Hallo Leute,

ich bin im 1. Semester und solche Aufgaben sind für mich total neu und weiß nicht wie man sowas beweist.

Also was injektiv, surjektiv und bijektiv bedeutet habe ich eigentlich verstanden.

f1 ist bijektiv, weil jedes Element vom Wertebereich 1 mal getroffen wird. Also eine eindeutige Zuordnung.

f2 ist injektiv. Ich kann das nicht genau erklären weil es nach Gefühl ist. Jede Zahl wird ja quadriert und so gibt es immer z.B. für +2 oder -2 das gleiche Ergebnis.

Mit f3 und f4 komme ich gar nicht klar. Weiß nicht wie man mit so abstrakten Dingern umgeht.
In der Vorlesung sieht das so ,,logisch" aus bei Beispielen.

Zur 2.

Was will man mit der Aussage sagen? Ich verstehe das gar nicht.

Vielen vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Funktionen injektiv usw. ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Do 09.09.2010
Autor: schachuzipus

Bitte keine Doppelopsts!

Du kansnt deine Artikel auch nach dem Absenden noch bearbeiten!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]