www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Funktionen in Kompakta
Funktionen in Kompakta < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen in Kompakta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Fr 05.05.2006
Autor: Gero

Aufgabe
Sei f: K [mm] \to \IR [/mm] stetige Funktion auf einem kompakten metrischen Raum (K,d).
z.z.: Es gibt [mm] x_{min}, x_{max} \in [/mm] K mit [mm] f(x_{min}) \le [/mm] f(x)  [mm] \le f(x_{max}) [/mm] für alle x [mm] \in [/mm] K.

Hallöle an alle,

hab hier fast ne Lösung dazu. Mir fehlt noch der Schluß im 1. Teil. Vielleicht kann sich ja mal jemand den Beweis anschauen und mir sagen, ob dies so stimmt. Also:

1. Zuerst beweise ich, dass f(K) beschrämkt.
Angenommen f(K) nicht beschränkt [mm] \Rightarrow \exists x_n \in [/mm] K mit [mm] f(x_n) \to \infty. [/mm]
Da K kompakt [mm] \Rightarrow \exists [/mm] Teilfolge [mm] x_n_k \to x_n [/mm] für k [mm] \to \infty. [/mm]
Da f stetig [mm] \Rightarrow f(x_n_k) \to f(x_n) [/mm]

Da weiß ich jetzt nicht weiter. Sollte natürlich Richtung Widerspruch laufen.

2. f(K) beschränkt [mm] \Rightarrow \exists [/mm] sup [mm] \{f(x):x \in K \} [/mm] =:a
[mm] \Rightarrow \exists (x_n)_{n \in \IN} \in [/mm] K mit [mm] f(x_n) [/mm] \ to a
Da K kompakt [mm] \Rightarrow \exists [/mm] Teilfolge [mm] x_n_k \to [/mm] z [mm] \in [/mm] K
Da f stetig [mm] \Rightarrow f(x_n_k) \to [/mm] f(z)
Da [mm] f(x_n_k) \to [/mm] a [mm] \Rightarrow [/mm] a = f(z) = max f(x) = [mm] x_{max} [/mm]

3. f(K) beschränkt [mm] \Rightarrow \exists [/mm] inf [mm] \{f(x):x \in K \} [/mm] =:b
[mm] \Rightarrow \exists (x_n)_{n \in \IN} \in [/mm] K mit [mm] f(x_n) [/mm] \ to b
Da K kompakt [mm] \Rightarrow \exists [/mm] Teilfolge [mm] x_n_k \to [/mm] d [mm] \in [/mm] K
Da f stetig [mm] \Rightarrow f(x_n_k) \to [/mm] f(d)
Da [mm] f(x_n_k) \to [/mm] a [mm] \Rightarrow [/mm] b = f(d) = min f(x) = [mm] x_{min} [/mm]

Kann man das so machen?
Danke für eure Antwort schonmal im voraus!

Liebe Grüße

Gero


        
Bezug
Funktionen in Kompakta: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Fr 05.05.2006
Autor: Leto

Hallo Gero!

Ich denke, mit 2. und 3. hast du recht.

> 1. Zuerst beweise ich, dass f(K) beschrämkt.
>  Angenommen f(K) nicht beschränkt [mm]\Rightarrow \exists x_n \in[/mm]
> K mit [mm]f(x_n) \to \infty.[/mm]
>  Da K kompakt [mm]\Rightarrow \exists[/mm]
> Teilfolge [mm]x_n_k \to x_n[/mm] für k [mm]\to \infty.[/mm]
>  Da f stetig
> [mm]\Rightarrow f(x_n_k) \to f(x_n)[/mm]
>  
> Da weiß ich jetzt nicht weiter. Sollte natürlich Richtung
> Widerspruch laufen.

Den ersten Teil würde ich jedoch nicht mit Widerspruch beweisen, sondern ausnutzen, dass stetige Funktionen mit der Limesbildung "vertauschen", mit anderen Worten gilt:

[mm]\limes_{k\to\infty} f\left(x_{n_k}\right) = f\left(\limes_{k\to\infty}x_{n_k}\right)[/mm]. Dann bist du schon fast fertig.

Ich hoffe, das hilft dir weiter.
Liebe Grüße, Markus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]