www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Funktionen im Kompaktum
Funktionen im Kompaktum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen im Kompaktum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 03.05.2006
Autor: Gero

Aufgabe
Seien [mm] (K,d_K) [/mm] und [mm] (N,d_N) [/mm] metrische Räume und f: K [mm] \to [/mm] N eine stetige Funktion.
K kompakt [mm] \Rightarrow [/mm] f(K) kompakt

Hallöle an alle,

hab da mal wieder ne Aufgabe, bei der ich mit meiner Lösung nicht sicher bin.

Beweis: Sei [mm] (y_n)_{n \in \IN} [/mm] Folge in f(K).
D.h. also es ex. zu jedem n [mm] \in \IN [/mm] ein [mm] x_n \in [/mm] X mit [mm] y_n [/mm] = [mm] f(x_n). [/mm]
Da ja K kompakt ist [mm] \Rightarrow [/mm] Es ex. eine konvergente Teilfolge [mm] (x_n_k)_{k \in \IN} [/mm] von [mm] (x_n)_{n \in \IN} [/mm] mit [mm] x_n_k \to [/mm] x [mm] \in [/mm] X für k [mm] \to \infty. [/mm]

(* f stetig [mm] \Rightarrow [/mm] Zu  [mm] \varepsilon [/mm] > 0 existiert [mm] \delta [/mm] > 0 mit [mm] d(x,x_0) [/mm] < [mm] \delta \Rightarrow d(f(x_n),f(x_0)) [/mm] <  [mm] \varepsilon [/mm]
[mm] \Rightarrow f(x_n) \to f(x_0)) [/mm]
Also gilt da f stetig und * [mm] \Rightarrow y_n_k [/mm] = [mm] f(x_n_k) \to [/mm] f(x) [mm] \in [/mm] f(K) für k [mm] \to \infty. [/mm]
Haben also konvergente Teilfolge in f(K) [mm] \Rightarrow [/mm] f(K) kompakt.

So nun meine Frage, kann ich das so beweisen oder stimmt das so nicht?
Danke für eure Antworten schonmal im voraus!

Nen schönen Abend noch!
Grüßle

Gero

        
Bezug
Funktionen im Kompaktum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 03.05.2006
Autor: felixf

Hallo Gero!

> Seien [mm](K,d_K)[/mm] und [mm](N,d_N)[/mm] metrische Räume und f: K [mm]\to[/mm] N
> eine stetige Funktion.
> K kompakt [mm]\Rightarrow[/mm] f(K) kompakt
>  Hallöle an alle,
>  
> hab da mal wieder ne Aufgabe, bei der ich mit meiner Lösung
> nicht sicher bin.
>
> Beweis: Sei [mm](y_n)_{n \in \IN}[/mm] Folge in f(K).
>  D.h. also es ex. zu jedem n [mm]\in \IN[/mm] ein [mm]x_n \in[/mm] X mit [mm]y_n[/mm]
> = [mm]f(x_n).[/mm]
>  Da ja K kompakt ist [mm]\Rightarrow[/mm] Es ex. eine konvergente
> Teilfolge [mm](x_n_k)_{k \in \IN}[/mm] von [mm](x_n)_{n \in \IN}[/mm] mit
> [mm]x_n_k \to[/mm] x [mm]\in[/mm] X für k [mm]\to \infty.[/mm]

So weit so richtig.

> (* f stetig [mm]\Rightarrow[/mm] Zu  [mm]\varepsilon[/mm] > 0 existiert
> [mm]\delta[/mm] > 0 mit [mm]d(x,x_0)[/mm] < [mm]\delta \Rightarrow d(f(x_n),f(x_0))[/mm]
> <  [mm]\varepsilon[/mm]
>  [mm]\Rightarrow f(x_n) \to f(x_0))[/mm]
>  Also gilt da f stetig und
> * [mm]\Rightarrow y_n_k[/mm] = [mm]f(x_n_k) \to[/mm] f(x) [mm]\in[/mm] f(K) für k [mm]\to \infty.[/mm]

Also [mm] $\lim f(x_{n_k}) [/mm] = f(x)$ folgt auch schon direkt aus der Stetigkeit :-)

> Haben also konvergente Teilfolge in f(K) [mm]\Rightarrow[/mm] f(K)
> kompakt.

Genau.

> So nun meine Frage, kann ich das so beweisen oder stimmt
> das so nicht?

Ja, kannst du.

LG Felix


Bezug
                
Bezug
Funktionen im Kompaktum: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Do 04.05.2006
Autor: Gero

Oh, gut! Dann hab ich mir schon ein paar Zeilen gespart! *g*
Danke für die Antwort!

Liebe Grüße

Gero

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]