www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktionen extrudieren
Funktionen extrudieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen extrudieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 27.03.2014
Autor: MrMuffin

Hallo zusammen,
ich habe die folgende Frage:

Gegeben seien zwei beliebige Kurven $f$ und $g$ in [mm] $\IR^3$. [/mm] Wie kann ich mathematisch $f$ entlang $g$ extrudieren, sodass durch beide Kurven eine 3 dimensionale Fläche aufgespannt wird?

Das []Bild erklärt hoffentlich was ich meine.
Abgebildet sind 2 Splines und ich bin an der Beschreibung der Fläche interessiert (NICHT am Flächeninhalt!). Ich suche also eine Funktion in Abhängigkeit der Koordinaten $x,y,z$, sodass ich jeden Punkt der Fläche bestimmen kann.

Ich frage mich, ob man das über eine explizite Darstellung eines Oberflächenintegrals realisieren kann.

Für Hilfe bin ich wie immer dankbar!

Viele Grüße
MrMuffin

        
Bezug
Funktionen extrudieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Do 27.03.2014
Autor: Diophant

Hallo,

> Hallo zusammen,
> ich habe die folgende Frage:

>

> Gegeben seien zwei beliebige Kurven [mm]f[/mm] und [mm]g[/mm] in [mm]\IR^3[/mm]. Wie
> kann ich mathematisch [mm]f[/mm] entlang [mm]g[/mm] extrudieren, sodass durch
> beide Kurven eine 3 dimensionale Fläche aufgespannt wird?

>

> Das []Bild
> erklärt hoffentlich was ich meine.
> Abgebildet sind 2 Splines und ich bin an der Beschreibung
> der Fläche interessiert (NICHT am Flächeninhalt!). Ich
> suche also eine Funktion in Abhängigkeit der Koordinaten
> [mm]x,y,z[/mm], sodass ich jeden Punkt der Fläche bestimmen kann.

Da stimmt aber etwas nicht. Eine Funktion f(x,y,z) ist eine Funktion in einem vierdimensionalen Raum. Für mich ergibt das nur Sinn, wenn die Funktionen f und g beide vom Typ [mm] \IR\to\IR^3 [/mm] wären, also von einem Parameter abhängig aber vektorwertig. Das ergäbe dann jeweils ein linienförmiges Schaubild im [mm] \IR^3. [/mm]

Jetzt zur Extrusion: das beruht doch auf Gegenseitigkeit, also man kann ja nachher am Ende nicht mehr sagen, welche Funktion entlang der anderen extrudiert wurde. Und realisieren kann man das doch einfach durch eine bloße Addition, wobei jedoch darauf zu achten ist, dass f und g von unterschiedlichen Parametern abhängen, damit eine Fläche zustande kommt.

Ich gebe ja zu, dass meine Antwort jetzt eine Art Hüftschuss ist, aber ich müsste mich doch arg täuschen, wenn ich daneben liege.

> Ich frage mich, ob man das über eine explizite Darstellung
> eines Oberflächenintegrals realisieren kann.

Wenn du keinen Inhalt haben möchtest, wozu dann ein Integral?

Gruß, Diophant

Bezug
                
Bezug
Funktionen extrudieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Do 27.03.2014
Autor: MrMuffin

Recht hast du :D

Da habe ich den Wald vor lauter Bäumen nicht gesehen.

Vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]