www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Funktion und Graph
Funktion und Graph < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion und Graph: Schnittwinkel
Status: (Frage) beantwortet Status 
Datum: 22:26 So 10.01.2010
Autor: Mausibaerle

Aufgabe
Berechne den Schnittpunkt und Schnittwinkel der folgenden Geraden:
g(x)= 3x+5  
x=-3

Hallo Ihr,
also für den Schnittpunkt erhalte ich (-3/-4). Nun meine Frage: Wie kann ich ohne die Steigung der 2. Geraden einen Schnittwinkel ausrechnen? Ich habe ja nur die Formel
[mm] \alpha=\bruch{m-m}{1+m\*m}. [/mm]
Wäre super wenn ihr baldmöglichst helfen könntet!!
Lg Kathi

        
Bezug
Funktion und Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 10.01.2010
Autor: nooschi

am besten du zeichnest dir das Ganze mal auf.
Dann würdest du nämlich gleich sehen, dass du einfach den Winkel zwischen der ersten Geraden und der y-Achse berechnen musst, bzw der Winkel zwischen der ersten Geraden und der x-Achse und dann noch 90° minus den erhaltenen Winkel rechnen.

Konkret:
deine Formel: [mm] \alpha=\bruch{m-m}{1+m*m} [/mm] kenn ich nicht (und leuchtet mir jetzt so auf den ersten Blick auch nicht wirklich ein)
Ich machs mal auf meine Art, hoffentlich kannst du was damit anfangen.
Also ich berechne zuerst den Winkel zwischen g(x) und der x-Achse. g(x) hat die Steigung 3. Jetzt musst du in deine Zeichnung (die du jetzt hoffentlich gemacht hast) ein Steigungsdreieck einzeichnen, der Wert 3 bezeichnet nun das Verhältnis [mm] \bruch{Gegenkathete}{Ankathete} [/mm] von dem gesuchten Winkel. Damit erhältst du:
[mm] tan(\alpha)=\bruch{Gegenkathete}{Ankathete}=3 [/mm]
[mm] \Rightarrow \alpha\approx71.57 [/mm] °
wie gesagt ist das der Winkel zwischen der x-Achse und der Gerade, um nun den Winkel zwischen der y-Achse und der Geraden zu bekommen rechnest du:
90°-71.57°=18.43°
das wäre dann deine Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]