www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Funktion in Prädikatenlogik
Funktion in Prädikatenlogik < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion in Prädikatenlogik: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:13 Do 15.07.2010
Autor: maaam

Aufgabe
Drücken sie die Stetigkeit einer Funktion f: [mm] \IR [/mm] --> [mm] \IR [/mm] an der Stelle x als prädikatenlogische Formel aus.  

Hallo,
ich habe einen Aufgabe und komme irgendwie nicht weiter.


meine Lösung ist:
∀x ∈ [mm] \IR-->y [/mm] ∈ [mm] \IR [/mm] mit f(x)=y

Irgendwie finde ich das aber noch komisch. Und bei dem Rest graut es mir jetzt schon.

Könnte mir das bitte jemand bestätigen, oder sagen, wo der Fehler liegt?

Danke und Gruß
Matze

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion in Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 15.07.2010
Autor: Marcel

Hallo,

> Drücken sie die Stetigkeit einer Funktion f: [mm]\IR[/mm] --> [mm]\IR[/mm]
> an der Stelle x als prädikatenlogische Formel aus.
> Hallo,
>  ich habe einen Aufgabe und komme irgendwie nicht weiter.
>
>
> meine Lösung ist:
> ∀x ∈ [mm]\IR-->y[/mm] ∈ [mm]\IR[/mm] mit f(x)=y
>  
> Irgendwie finde ich das aber noch komisch. Und bei dem Rest
> graut es mir jetzt schon.
>
> Könnte mir das bitte jemand bestätigen,

leider nicht. Denn das hat nichts mit Stetigkeit an der Stelle [mm] $x\,$ [/mm] zu tun, s.u..

> oder sagen, wo der Fehler liegt?

Ja, da steht an keiner Stelle etwas über Stetigkeit (außerdem sollte die nur an der Stelle [mm] $x\,,$ [/mm] nicht an allen Stellen [mm] $x\,$ [/mm] ausgedrückt werden).

Z.B. erfüllt (die an jeder Stelle unstetige Funktion $f: [mm] \IR \to \IR$) [/mm]
[mm] $$f(x)=\begin{cases} 0, & \mbox{für } x \in \IQ \\ 1, & \mbox{für } x \in \IR \setminus \IQ \end{cases}$$ [/mm]
Deine Bedingung.

Und Deine Forderung ist zudem unnötig und gilt für eine jede Funktion [mm] $g\,: \IR \to \IR$, [/mm] denn weil [mm] $g\,$ [/mm] eine Funktion ist, existiert zu jedem [mm] $x\,$ [/mm] des Definitionsbereichs von [mm] $g\,,$ [/mm] also zu jedem $x [mm] \in \IR\,,$ [/mm] sogar genau ein [mm] $y\,$ [/mm] des Zielbereichs (der hier auch [mm] $\IR$ [/mm] ist) mit [mm] $g(x)=y\,.$ [/mm]

Stetigkeit von [mm] $f\,$ [/mm] an der Stelle [mm] $x\,$ [/mm] bedeutet:
Zu jedem [mm] $\epsilon [/mm] > 0$ existiert ein [mm] $\delta [/mm] > 0$ [mm] ($\delta=\delta(x,\epsilon)\,,$ [/mm] d.h. [mm] $\delta$ [/mm] darf und wird i.a. von [mm] $x\,$ [/mm] und [mm] $\epsilon$ [/mm] abhängen), so dass aus $|r-x| < [mm] \delta$ [/mm] schon [mm] $|f(r)-f(x)|<\epsilon$ [/mm] folgt.

Beste Grüße,
Marcel

Bezug
                
Bezug
Funktion in Prädikatenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 15.07.2010
Autor: maaam

Danke für deine Erläuterung Marcel.
Ich habe verstanden, worauf du hinaus möchtest, aber wie formuliere ich das aus? Leider fehlt mir da noch der rote Faden.  Versteh irgendwie noch nicht so recht, wie ich es ausdrüken muss.

Gruß
Matze

Bezug
                        
Bezug
Funktion in Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Fr 16.07.2010
Autor: wieschoo

Was willst du ausdrücken? Stetigkeit?
[mm] $f:\Omega\subset \IR \to \IR$ [/mm]
[mm] $\exists x\in \Omega\ \! \forall \varepsilon [/mm] > 0 [mm] \exists \delta_{x,\varepsilon} [/mm] >0 [mm] \forall r\in \Omega: [/mm] d( x,r ) < [mm] \delta \Rightarrow [/mm] d( f(x),f(r)) < [mm] \varepsilon [/mm] $

Wenn ich dich richtig verstanden habe möchtest du den Wortlaut in die Prädikatenlogik umsetzen. Dann schreib doch statt "für alle" [mm] $\forall$ [/mm] und statt existiert ein [mm] $\exists$ [/mm]

"Stetigkeit von $ [mm] f\, [/mm] $ an der Stelle $ [mm] x\, [/mm] $ bedeutet:
Zu jedem $ [mm] \epsilon [/mm] > 0 $ existiert ein $ [mm] \delta [/mm] > 0 $ , sodass für alle r aus dem Definitionsbereich gilt ,dass aus $ |r-x| < [mm] \delta [/mm] $ folgt $ [mm] |f(r)-f(x)|<\varepsilon [/mm] $ .  "

[mm] $f:\Omega\subset \IR \to \IR$ [/mm]
Stetigkeit in x
$ [mm] \red{\forall} \varepsilon [/mm] > 0 [mm] \green{\exists} \delta_{x,\varepsilon} [/mm] >0 [mm] \blue{\forall} r\in \Omega: [/mm] d( x,r ) < [mm] \delta \red{\Rightarrow} [/mm] d( f(x),f(r)) < [mm] \varepsilon [/mm] $

Bezug
                                
Bezug
Funktion in Prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Fr 16.07.2010
Autor: Marcel

Hallo,

> Was willst du ausdrücken? Stetigkeit?
>  [mm]f:\Omega\subset \IR \to \IR[/mm]
>  [mm]\exists x\in \Omega\ \! \forall \varepsilon > 0 \exists \delta_{x,\varepsilon} >0 \forall r\in \Omega: d( x,r ) < \delta \Rightarrow d( f(x),f(r)) < \varepsilon[/mm]

das, was da steht, ist nur eine Beschreibung für die Existenz (mindestens) eines Stetigkeitspunktes [mm] $x\,$ [/mm] bzgl [mm] $f\,.$ [/mm] Hier kann aber auch [mm] $\IR$ [/mm] mit einer anderen Metrik [mm] $d\,$ [/mm] versehen sein (das ist eine eingeschränkte Verallgemeinerung, denn in der Tat muss [mm] $\IR$ [/mm] bzgl. des Definitionsbereichs nicht die gleiche Metrik wie [mm] $\IR$ [/mm] bzgl. des Zielbereichs haben).

Beste Grüße,
Marcel

Bezug
                                        
Bezug
Funktion in Prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Mi 21.07.2010
Autor: wieschoo


> Hallo,
>  
> > Was willst du ausdrücken? Stetigkeit?
>  >  [mm]f:\Omega\subset \IR \to \IR[/mm]
>  >  [mm]\exists x\in \Omega\ \! \forall \varepsilon > 0 \exists \delta_{x,\varepsilon} >0 \forall r\in \Omega: d( x,r ) < \delta \Rightarrow d( f(x),f(r)) < \varepsilon[/mm]
>  
> das, was da steht, ist nur eine Beschreibung für die
> Existenz (mindestens) eines Stetigkeitspunktes [mm]x\,[/mm] bzgl
> [mm]f\,.[/mm] Hier kann aber auch [mm]\IR[/mm] mit einer anderen Metrik [mm]d\,[/mm]
> versehen sein (das ist eine eingeschränkte
> Verallgemeinerung, denn in der Tat muss [mm]\IR[/mm] bzgl. des
> Definitionsbereichs nicht die gleiche Metrik wie [mm]\IR[/mm] bzgl.
> des Zielbereichs haben).
>  
> Beste Grüße,
>  Marcel

Ok. Also dann so?
Seien (A,d) und [mm] (B,\tilde{d}) [/mm] Metrische Räume
[mm]f:\Omega\subset A \to B[/mm] heißt in x aus [mm] \Omega [/mm] stetig, falls
[mm] \forall \varepsilon > 0 \exists \delta_{x,\varepsilon} >0 \forall r\in \Omega: d( x,r ) < \delta \Rightarrow \tilde{d}( f(x),f(r)) < \varepsilon[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]