www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktion erstellen
Funktion erstellen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion erstellen: Die Form eines Blechs
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 03.07.2006
Autor: Yaso

Aufgabe
Ein Blech steckt auf der linken Seite waagerecht in der Wand, auf der rechten Seite liegt es im Abstand von zehn Zentimetern auf selber Höhe lose auf einer Mauer auf.

Durch ein Gewicht wird das Blech durchgebogen.

Erstelle die Funktion.

Ich gehe davon aus, dass es sich hierbei um eine Funktion dritten Grades handelt. Also lautet die Formel folgendermaßen:

f(x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx + d

Nun kommen meine Schlussfolgerungen. Da das Blech links waagerecht in der Mauer steckt habe ich dort einen Hochpunkt, in dem ich gleichzeitig den Ursprung meines Koordinatensystems lege. Daraus folgt:

1. f(0) = d = 0

Da es ein Hochpunkt ist gilt gleichzeitig:

2. f'(0) = [mm] 3ax^2 [/mm] + 2bx + c = c = 0

Zwei Variablen habe ich also eleminiert. Meine dritte Annahme:

f(10) = 1000a + 100b = 0

Soweit habe ich keine Probleme ... nur finde ich einfach keinen letzten Anhaltspunkt ... kann mir jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion erstellen: Zusatz!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Mo 03.07.2006
Autor: Yaso

Mir schreibt gerade jemand, dass der Lehrer eine Angabe vergessen hat! Die fehlt auf meinem Zettel allerdings. Der Y-Wert des Tiefpunktes, wo das Blech durchgebogen wird, liegt bei -2.

Bezug
        
Bezug
Funktion erstellen: Bestimmungsgleichung
Status: (Antwort) fertig Status 
Datum: 18:14 Mo 03.07.2006
Autor: Loddar

Hallo Yaso,

[willkommenmr] !!


Gut, dass nun noch dieser Nachtrag kam ;-) ...


Mit der ersten Ableitung $f'(x) \ = \ [mm] 3a*x^2+2b*x$ [/mm] kannst du ja nun die Stelle des Tiefpunktes [mm] $x_T [/mm] \ [mm] \not= [/mm] \ 0$ ermitteln und anschließend in die Ausgangsgleichung einsetzen mit:

[mm] $f(x_T) [/mm] \ = \ [mm] a*x_T^3+b*x_T^2 [/mm] \ = \ ... \ = \ -2$


Gruß
Loddar


Bezug
                
Bezug
Funktion erstellen: Bestimmungsgleichung
Status: (Frage) beantwortet Status 
Datum: 18:20 Mo 03.07.2006
Autor: Yaso

Hallo Loddar!

Die habe ich jetzt aufgestellt. Danach sieht meine Matrix so aus:

(I) 1000a  + 100b = 0
(II) [mm] ax^3 [/mm] + [mm] bx^2 [/mm] = -2

Aber wie mache ich dann weiter?

Bezug
                        
Bezug
Funktion erstellen: erst Minimum ermitteln
Status: (Antwort) fertig Status 
Datum: 18:35 Mo 03.07.2006
Autor: Loddar

Hallo Yaso!


Wie oben angedeutet ... Du musst aus der Gleichung $ [mm] f'(x_T) [/mm] \ = \ [mm] 3a\cdot{}x_T^2+2b\cdot{}x_T [/mm] \ = \ [mm] \red{0}$ [/mm] zunächst den Wert [mm] $x_T$ [/mm] des Tiefpunktes ermitteln. Dabei darfst Du verwenden, dass gilt [mm] $x_T [/mm] \ [mm] \not= [/mm] \ 0$ ; schließlich befindet sich dort auch ein Hochpunkt (und kein Tiefpunkt).


Gruß
Loddar


Bezug
                                
Bezug
Funktion erstellen: Minimum
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 03.07.2006
Autor: Yaso

Ich stand gerade auf der Leitung! Jetzt habe ichs, danke!

Erst den Tiefpunkt bestimmen ... Den fand ich bei x = 2/3 * b/a

Bezug
                                        
Bezug
Funktion erstellen: kleine Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Mo 03.07.2006
Autor: Loddar

Hallo Yaso!


[aufgemerkt] Mein Tiefpunkt liegt bei [mm] $x_T [/mm] \ = \ [mm] \red{-}\bruch{2b}{3a}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]