www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Funktion eine Distribution
Funktion eine Distribution < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion eine Distribution: Idee
Status: (Frage) beantwortet Status 
Datum: 18:25 Fr 19.11.2010
Autor: mathematik_graz

Aufgabe
Ist diese Funktion eine Distribution?
[mm] =\summe_{k=0}^{n} f^{(k)}(k) [/mm]
f [mm] \in C_0^{\infty}(R) [/mm] und n [mm] \in [/mm] N

Mein Problem ist, dass ich bis jetzt noch fast gar nichts mit Distributionen zu tun hatte und ich ziemlich Ideen los bin!
Ich bin mir derzeit überhaupt nicht sicher welche Eigenschaften die Funktionen erfüllen müssen:

[mm] \limes_{k\rightarrow\infty} ||\partial^{\alpha}f_{k}||_{\infty}=0 [/mm]
wobei [mm] f_{k} [/mm] eine Folge ist.

[mm] \limes_{k\rightarrow\infty} T(f_{k})=0 [/mm]
T ist ein lineares Funktional

Sind das in groben Zügen die zwei Aussagen, dich ich überprüfen muss?!
Ich hoffe ich bin da nicht auf dem komplett falschen Weg!!!


        
Bezug
Funktion eine Distribution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Fr 19.11.2010
Autor: Walde

Hi Mathe_graz,

ich schreibe dir nur eine Mitteilung, dann können sich das auch noch mal andere ankucken, die mehr Ahnung von Distributionen haben, als ich. Die Aufgabe kam mir aber bekannt vor, in unserer Vorlesung wird folgender Satz angeführt, um zu zeigen, dass dies eine Distribution ist, vielleicht habt ihr den Satz ja auch gehabt [mm] (\mathcal{D}(\Omega) [/mm] ist der Raum der Testfunktionen auf [mm] \Omega): [/mm]

Sei [mm] T:\mathcal{D}(\Omega)\to \IR [/mm] ein lineares Funktional.
T ist genau dann eine Distribution, wenn es zu jedem Kompaktum [mm] K\subset\Omega [/mm] Konstanten c>0 und [mm] N\in\IN_0 [/mm] gibt, mit
[mm] $||\le c*max_{|\alpha|\le N}sup_{x\in K}|D^\alpha [/mm] f(x)|$  für alle [mm] f\in\mathcal{D}(\Omega) [/mm] mit supp [mm] f\subset [/mm] K.

Die Linearität deines Funktionals ist klar und für grosse k liegt k nicht mehr im Träger von f, dann hat man eine endliche Summe,dann müsste die Abschätzung auch zu machen sein.

Bringt natürlich nur was, wenn ihr den Satz hattet.

Edit:

Ich habe mir grade nochmal die zwei Eigenschaften angeschaut, die du hingeschrieben hast und bin mir nicht sicher, ob du das Richtige meinst, deswegen zum Abgleich, meine Definition aus der Vorlesung:

Ein lineares Funktional [mm] T:\mathcal{D}(\Omega)\to \IR [/mm] heisst Distribution, wenn gilt:
[mm] \to [/mm] 0 für alle Nullfolgen [mm] (f_k)_{k\in\IN} \subset \mathcal{D}(\Omega). [/mm]
Wobei [mm] (f_k)_k [/mm] Nullfolge im Sinne der Konvergenz in [mm] \mathcal{D}(\Omega) [/mm] zu verstehen ist, d.h. [mm] f_k\to0 \gdw [/mm] es gibt ein Kompaktum [mm] K\subset\Omega [/mm] mit supp [mm] f_k\subset [/mm] K und [mm] \limes_{k\to\infty}sup_{x\in K}|D^\alpha f_k|=0. [/mm]

Dh. wenn du das nachrechnen wolltest, müsstest du für ein beliebiges [mm] f_j\to0 (\mathcal{D} (\Omega)-Konvergenz) [/mm] zeigen
[mm] =\summe_{k=0}^{n}f_j^{(k)}(k)\to0, n\in\IN [/mm]

und natürlich u ist linear, aber das ist der leichte Teil.

LG walde

Bezug
        
Bezug
Funktion eine Distribution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Fr 19.11.2010
Autor: rainerS

Hallo!

> Ist diese Funktion eine Distribution?
>  [mm]=\summe_{k=0}^{n} f^{(k)}(k)[/mm]
>  f [mm]\in C_0^{\infty}(R)[/mm]
> und n [mm]\in[/mm] N
>  Mein Problem ist, dass ich bis jetzt noch fast gar nichts
> mit Distributionen zu tun hatte und ich ziemlich Ideen los
> bin!
>  Ich bin mir derzeit überhaupt nicht sicher welche
> Eigenschaften die Funktionen erfüllen müssen:
>  
> [mm]\limes_{k\rightarrow\infty} ||\partial^{\alpha}f_{k}||_{\infty}=0[/mm]
>  
> wobei [mm]f_{k}[/mm] eine Folge ist.
>  
> [mm]\limes_{k\rightarrow\infty} T(f_{k})=0[/mm]

Da verstehe ich nicht, was du sagen willst.

>  T ist ein lineares Funktional

Richtig. Das ist für u sicher der Fall.

Tipp: In der Definition steht eine endliche Summe (von n+1 Elementen). Das heisst, u ist eine Distribution, wenn jeder Summand eine Distribution ist. Stelle jeden dieser Summanden als Ableitung der [mm] $\delta$-Distribution [/mm] dar.

Viele Grüße
   Rainer

Bezug
                
Bezug
Funktion eine Distribution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Sa 20.11.2010
Autor: mathematik_graz

Vorne weg mal Danke für die langen Antworten!!!

Also ich habe jetzt deinen Tipp verfolgt und alles in Delta-Distributionen um geschrieben.
allgemeine definition:
[mm] <\delta^{(n)}_{0},f>=(-1)^{n}f^{(n)}(0) [/mm]

[mm] =\summe_{k=0}^{n}(-1)^{k}<\delta^{(k)}_{k},f> [/mm]

Damit wäre ich dann schon fertig?! Leider bin ich mir immer noch nicht ganz im Klaren wie ich mit den Distributionen umgehen soll!
was würde sich ändern für:
für f(0):
[mm] =\summe_{k=0}^{n} f^{(k)}(0) [/mm]
summe gegen unendlich:
[mm] =\summe_{k=0}^{\infty} f^{(k)}(k) [/mm]

wenn mir da noch jemand tipps geben könnte dann verstehe ich vll genauer über welche kriterien das ganze zusammenhängt!!

Bezug
                        
Bezug
Funktion eine Distribution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Sa 20.11.2010
Autor: rainerS

Hallo!

> Vorne weg mal Danke für die langen Antworten!!!
>  
> Also ich habe jetzt deinen Tipp verfolgt und alles in
> Delta-Distributionen um geschrieben.
>  allgemeine definition:
>  [mm]<\delta^{(n)}_{0},f>=(-1)^{n}f^{(n)}(0)[/mm]
>  
> [mm]=\summe_{k=0}^{n}(-1)^{k}<\delta^{(k)}_{k},f>[/mm]
>  
> Damit wäre ich dann schon fertig?! Leider bin ich mir
> immer noch nicht ganz im Klaren wie ich mit den
> Distributionen umgehen soll!

Ja, du bist fertig, denn eine Linearkombination von Distributionen, was u offensichtlich ist, ist eine Distribution.

>  was würde sich ändern für:
>  für f(0):
>  [mm]=\summe_{k=0}^{n} f^{(k)}(0)[/mm]

Da steht dann [mm] $\delta^{(k)}_{0}$ [/mm] statt [mm] $\delta^{(k)}_{k}$ [/mm] .

>  summe gegen unendlich:
>  [mm]=\summe_{k=0}^{\infty} f^{(k)}(k)[/mm]

Das ist ein bischen schwieriger, weil eine unendliche Reihe von Distributionen nicht automatisch konvergieren muss.

Ist f eine Testfunktion mit kompaktem Träger, so sind ab irgendeinem k alle Summanden 0.

Wenn f eine schnell fallende Funktion (Schwartzfunktion) ist, ist für alle [mm] $k,\alpha\in \IN_0$: [/mm]

[mm]\sup |x^k f^{(\alpha)} (x) | \le C [/mm] für ein $C> 0$.

Damit müsstest du die Konvergenz zeigen können.

Viele Grüße
   Rainer


Bezug
                                
Bezug
Funktion eine Distribution: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:27 Sa 20.11.2010
Autor: mathestudent3

laut angabe ist ja f [mm] \in C^{\infty}_{0} [/mm] damit hat es einen komapkten träger, da ich aber immer an der stelle 0 auswerte bringt mir das nichts.
mehr informationen habe ich nicht deshalb kann ich nicht mit sicherheit sagen ob es eine distribution ist.
die aufgabenstellung ist auch so, dass nicht alle funktionen distributionen sind!
der letzte fall ist jetzt:
[mm] =\summe_{k=0}^{n} |f^{(k)}(0)|^{2} [/mm]

in dem fall kann ich das ganze wieder in deltas umschreiben. das quadrat ändert ja eigentlich nichts oder?!

ahja und was ich dich noch fragen wollte: Dass die summe von distributionen wieder eine distribution ist, hat dieser satz einen bestimmten namen?!

DANKE für deine konkrete Hilfe!

lg
Michael

Bezug
                                        
Bezug
Funktion eine Distribution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 So 21.11.2010
Autor: mathematik_graz

das hab ich erst jetzt gesehen. habe das letzte mal vom account einer meiner mitstudenten geschrieben!
sorry! immer diese pc wechsel.

Bezug
                                        
Bezug
Funktion eine Distribution: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Mo 22.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]