www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Freie Gruppe
Freie Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freie Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 So 18.06.2006
Autor: StolperJochen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin,

ich komme mit folgender Frage überhaupt nicht zurecht. Vielleicht habt Ihr eine Lösung parat:

Es sei [mm]S[/mm] eine Teilmenge einer Gruppe [mm]G[/mm]. Dann heisst [mm]G[/mm] freie Gruppe mit Basis [mm]S[/mm], falls [mm]G=[/mm] und es zu jeder Gruppe [mm]G'[/mm] und jeder Abbildung von Mengen [mm]f:S\rightarrow G'[/mm] einen eindeutigen Homomorphismus [mm]\varphi_f:G\rightarrow G'[/mm] gibt mit [mm]\varphi_f(s)=f(s)[/mm] für alle [mm]s\in S[/mm].
Ist [mm]G[/mm] frei mit Basis [mm]S[/mm], so bezeichnen wir [mm]G[/mm] mit [mm]F(S)[/mm] ("F" wie "frei").
Zeigen Sie durch Konstruktion, dass [mm]F(S)[/mm] existiert für eine beliebige Menge [mm]S[/mm].
Beweisen Sie, dass die freie abelsche Gruppe mit Basis [mm]S[/mm] eine Faktorgruppe von [mm]F(S)[/mm] ist.

        
Bezug
Freie Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 So 18.06.2006
Autor: Jan_Z

Hallo Jochen,
geht es um abelsche Gruppen oder ist die algemeine freie Gruppe gemeint?

Im ersten Fall ist die Konstruktion nicht schwierig, man betrachtet die Menge der Abbildungen [mm] $S\rightarrow\mathbb{Z}$, [/mm] zeigt sie eine Gruppe bilden, zeigt, dass man eine kanonische Einbettung von S in diese Gruppe hat und das jede Abbildung von S in eine abelsche Gruppe über diese freie abelsche Gruppe faktorisiert (via eindt. Homomorphismus).
Dass jede abelsche Gruppe G Faktorgruppe einer freien abelschen Gruppe ist, sieht man leicht, wenn man sich ein Erzeugendensystem S von G wählt und dazu die freie abelsche Gruppe bildet. Man erhält dann einen kanonischen surjektiven Homomorphismus von dieser freien abelschen Gruppe nach G, wenn man nun den Homomorphiesatz anwendet, folgt die Behauptung.

Viele Grüße,
Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]