www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Frage zur Lösung
Frage zur Lösung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Sa 29.10.2016
Autor: pc_doctor

Aufgabe
S Menge reeller Zahlen
S = { [mm] \bruch{m-n}{m+n} [/mm]  | m,n [mm] \in \IN, [/mm] m+n > 0 }

Hallo,

die Aufgabe ist es, Supremum, Infimum und ggf. Max und Min zu ermitteln.

Das Supremum habe ich schon, es ist die 1.

Zu dem Infimum habe ich eine Frage: Laut Lösung ist -1 das Infimum, indem man nämlich für m = 0 und n = 1 einsetz.

Aber es gibt doch noch eine größere Zahl als -1, zum Beispiel [mm] -\bruch{1}{3}, [/mm] die man mit m = 1 und n = 2 erreicht:

[mm] \bruch{1-2}{2+1} [/mm] = [mm] \bruch{-1}{3} [/mm]

Und Infimum ist doch die größte untere Schranke und [mm] -\bruch{1}{3} [/mm] > - 1

Wo ist mein Denkfehler?

Danke im Voraus.

        
Bezug
Frage zur Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Sa 29.10.2016
Autor: Chris84

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> S Menge reeller Zahlen
>  S = { [mm]\bruch{m-n}{m+n}[/mm]  | m,n [mm]\in \IN,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

m+n > 0 }

>  Hallo,

Huhu,

>  
> die Aufgabe ist es, Supremum, Infimum und ggf. Max und Min
> zu ermitteln.
>  
> Das Supremum habe ich schon, es ist die 1.
>
> Zu dem Infimum habe ich eine Frage: Laut Lösung ist -1 das
> Infimum, indem man nämlich für m = 0 und n = 1 einsetz.
>
> Aber es gibt doch noch eine größere Zahl als -1, zum
> Beispiel [mm]-\bruch{1}{3},[/mm] die man mit m = 1 und n = 2
> erreicht:
>  
> [mm]\bruch{1-2}{2+1}[/mm] = [mm]\bruch{-1}{3}[/mm]
>  
> Und Infimum ist doch die größte untere Schranke und
> [mm]-\bruch{1}{3}[/mm] > - 1
>
> Wo ist mein Denkfehler?

Du bist bei Schranke reingefallen :
$k$ heisst dann doch untere Schrenke, wenn $k<x\ [mm] \forall x\in [/mm] S$, anschaulich, alle Elemente der Menge $S$ sind groesser als die gegebene Schranke (es muss ja nicht nur eine geben).

Nun, -1/3 ist sicherlich groesser als -1, aber -1/3 ist keine untere Schranke, denn $S/ni -1 < [mm] -\frac{1}{3}$, [/mm] also es gibt ein Element aus $S$, das kleiner als -1/3 ist.

Klar soweit!? :)

Und da -1/3 keine Schranke ist, kann es sicherlich auch nicht Infimum sein.

>
> Danke im Voraus.  

Gruss,
Chris

Bezug
                
Bezug
Frage zur Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Sa 29.10.2016
Autor: pc_doctor

Hallo :D

Ahh, ich verstehe, stimmt, das macht Sinn.

Okay, dann weiß ich nun Bescheid, vielen lieben Dank und schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]