www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Frage zu Unterräumen
Frage zu Unterräumen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Unterräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mi 11.05.2016
Autor: pc_doctor

Hallo,

ich habe eine Frage zu Unterräumen eines Vektorraumes.

Angenommen, wir haben einen V  K- Vektorraum mit Dimension n.

Dieser Vektorraum hat zwei Unterräume [mm] U_1 [/mm] und [mm] U_2. [/mm]

Kann man jetzt sagen, dass [mm] dim(U_1) [/mm] + [mm] dim(U_2) [/mm] = n sein darf (n = dim des Vektorraumes)?

Also kann man sagen, dass die Summe der Dimensionen der beiden Unterräume wieder die Dimension des Vektorraumes ergeben muss?

Vielen Dank im Voraus.

        
Bezug
Frage zu Unterräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 11.05.2016
Autor: fred97


> Hallo,
>  
> ich habe eine Frage zu Unterräumen eines Vektorraumes.
>  
> Angenommen, wir haben einen V  K- Vektorraum mit Dimension
> n.
>  
> Dieser Vektorraum hat zwei Unterräume [mm]U_1[/mm] und [mm]U_2.[/mm]
>  
> Kann man jetzt sagen, dass [mm]dim(U_1)[/mm] + [mm]dim(U_2)[/mm] = n sein
> darf (n = dim des Vektorraumes)?
>  
> Also kann man sagen, dass die Summe der Dimensionen der
> beiden Unterräume wieder die Dimension des Vektorraumes
> ergeben muss?

Nein, das ist i.a. falsch.

Nimm den [mm] \IR^3 [/mm] und darin 2 geraden durch den Ursprung

fred

>
> Vielen Dank im Voraus.  


Bezug
                
Bezug
Frage zu Unterräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Mi 11.05.2016
Autor: pc_doctor

Auch hier noch mal ein Dankeschön (Y).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]