www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Frage zu Koeffizienten
Frage zu Koeffizienten < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Koeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 06.09.2011
Autor: Haiza

Aufgabe
Gegeben ist eine Rechteckfunktion mit folgenden Eigenschaften:
$ [mm] -\bruch{1}{2} \text{ für }\pi \le [/mm] t [mm] \le [/mm] 0 $
$ [mm] \bruch{1}{2}\text{ für }0 \le [/mm] t [mm] \le \pi [/mm] $
f(t)= [mm] \bruch{1}{2} [/mm]


Hallo,
als Merksatz habe ich mir "damals" in der Vorlesung aufgeschrieben:
-"Bei einer Rechteckfunktion bzw. einer ungeraden Funktion sind all [mm] $a_n=0$. [/mm]

Warum ist das so? Ich habe auch nicht ganz den Unterschied zwischen [mm] $C_n$ [/mm] und [mm] $a_n$, $b_n$ [/mm] verstanden.

Könnt ihr mir das kurz erläutern?

Gruß und danke im Voraus!

        
Bezug
Frage zu Koeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mi 07.09.2011
Autor: chrisno

Das fehlende Minuszeichen denke ich mir mal. Was das f(t) = 0,5 soll verstehe ich nicht.

Zum einfachen Verständnis:
Zeichne die Rechteckfunktion. Die soll dann durch eine Summe von Sinus- und Cosinusfunktionen dargestellt werden. Die Cosinusfunktionen passen aber nicht, weil sie immer auf beiden Seiten der y-Achse spiegelbildlich das Gleiche hinzufügen. Mit denen kann man also nur Funktionen erzeugen, die diese Spiegelsymmetrie haben. Mit den Sinusfunktionen kann man entsprechend nur Funktionen erzeugen, die eine Punktsymmetrie zum Ursprung haben. Da Deine Rechteckfunktion diese Symmetrie hat, helfen also nur Sinusfunktionen weiter. Die [mm] $a_n$ [/mm] und [mm] $b_n$ [/mm] sind die Vorfaktoren. Offensichtlich sind die [mm] $b_n$ [/mm] die Vorfaktoren vor den Cosinusfunktionen.

Zu der Frage nach den [mm] $a_n$, $b_n$ [/mm] und [mm] $C_n$ [/mm] bitte ich Dich, erst einmal die Wikipedia Seite http://de.wikipedia.org/wiki/Fourierreihe zu lesen. Frage dann bitte zu den einzelnen Stellen, die Du nicht verstehst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]