www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Frage zu Cauchy Produkt Reihen
Frage zu Cauchy Produkt Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Cauchy Produkt Reihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:34 So 20.11.2016
Autor: X3nion

Guten Abend zusammen!

Ich habe wieder mal eine Frage zu einem Beweis.
Dieses Mal geht es um den Beweis des Cauchy-Produkts bei Reihen.

---

Der Satz lautet in der Literatur (Analysis 1, Forster) wie folgt:

Es seinen [mm] \summe_{n=0}^{\infty} a_n [/mm] und [mm] \summe_{n=0}^{\infty} b_n [/mm] absolut konvergente Reihen. Für n [mm] \in \IN [/mm] definiert man

[mm] c_n [/mm] := [mm] \summe_{k=0}^{n} a_{k}b_{n-k} [/mm] = [mm] a_0b_n [/mm] + [mm] a_{1}b_{n-1} [/mm] + ... + [mm] a_{n}b_0. [/mm]

Dann ist auch die Reihe [mm] \summe_{n=0}^{\infty} c_n [/mm] absolut konvergent mit

[mm] \summe_{n=0}^{\infty} c_n [/mm] = [mm] (\summe_{n=0}^{\infty} a_n)*(\summe_{n=0}^{\infty} b_n). [/mm]

Beweis:

Die Definition des Koeffizienten [mm] c_n [/mm] kann auch wie folgt geschrieben werden:
[mm] c_n [/mm] = [mm] \summe\{a_{k}b_{l}: k + l = n\}. [/mm]
Es wird dabei über alle Indexpaare (k,l) summiert, die in [mm] \IN \times \IN [/mm] auf der Diagonalen k + l = n liegen. Deshalb gilt für die Partialsumme

[mm] C_N [/mm] := [mm] \summe_{n=0}^{N} c_n [/mm] = [mm] \summe\{a_{k}b_{l}: (k,l) \in \Delta_{N} \}, [/mm]

wobei [mm] \Delta_N [/mm] das wie folgt definierte Dreieck in [mm] \IN [/mm] x [mm] \IN [/mm] ist:

[mm] \Delta_N [/mm] := [mm] \{(k,l) \in \IN \times \IN : k + l \le N \}, [/mm] siehe hier angefügte Skizze.

[Dateianhang nicht öffentlich]

Multipliziert man die Partialsummen

[mm] A_N [/mm] := [mm] \summe_{n=0}^{N} a_n [/mm] und [mm] B_N [/mm] := [mm] \summe_{n=0}^{N} b_n [/mm]

aus, erhält man als Produkt

[mm] A_{N}B_{N} [/mm] = [mm] \summe\{a_{k}b_{l}: (k,l) \in Q_N\}, [/mm]

wobei [mm] Q_N [/mm] das Quadrat

[mm] Q_N [/mm] := [mm] \{(k,l) \in \IN \times \IN: 0 \le k \le N, 0 \le l \le N\} [/mm]

bezeichnet. Da [mm] \Delta_N \subset Q_N, [/mm] kann man schreiben

[mm] A_{N}B_{N} [/mm] - [mm] C_N [/mm] = [mm] \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash \Delta_N\}. [/mm]

Für die Partialsummen

[mm] A^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |a_n|, B^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |b_n| [/mm]

erhält man wie oben

[mm] A^{\*}_{N}B^{\*}_{N} [/mm] = [mm] \summe\{|a_{k}||b_{l}|: (k,l) \in Q_N\}. [/mm]

Da [mm] Q_{\lfloor N/2 \rfloor} \subset \Delta_N, [/mm] folgt [mm] Q_N \backslash \Delta_N \subset Q_N \backslash Q_{\lfloor N/2 \rfloor}, [/mm] also

[mm] |A_{N}B_{N} [/mm] - [mm] C_{N}| \le \summe\{|a_{k}||b_{l}| : (k,l) \in Q_N \backslash Q_{\lfloor N/2 \rfloor}\} [/mm] = [mm] A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] A^{\*}_{\lfloor N/2 \rfloor}B^{\*}_{\lfloor N/2 \rfloor} [/mm]

Da die Folge [mm] (A^{\*}_{N}B^{\*}_{N}) [/mm] konvergiert, also eine Cauchy-Folge ist, strebt die letzte Differenz für N -> [mm] \rightarrow \infty [/mm] gegen , d.h.

[mm] \limes_{N\rightarrow\infty} C_N [/mm] = [mm] \limes_{N\rightarrow\infty} A_{N}B_{N} [/mm] = [mm] \limes_{N\rightarrow\infty} A_{N} \limes_{N\rightarrow\infty} B_{N}. [/mm]

Damit ist gezeigt, dass [mm] \summe c_n [/mm] konvergiert und die im Satz behauptete Formel über das Cauchy-Produkt gilt. Es ist noch die absolute Konvergenz von [mm] \summe c_n [/mm] zu beweisen. Wegen

[mm] |c_n| \le \summe_{k=0}^{n} |a_{k}||b_{n-k}| [/mm]

ergibt sich dies durch Anwendung des bisher Bewiesenen auf die Reihen [mm] \summe |a_n| [/mm] und [mm] \summe |b_n|. [/mm]

---

Nun habe ich ein paar Fragen zu dem Beweis, wann und warum man die Absolutbeträge der jeweiligen Beträge nutzt.
Den allerletzten Schritt im Beweis, dass [mm] \summe c_n [/mm] absolut konvergiert, würde ich im nächsten Beitrag stellen, sobald mir der Beweisteil bis dahin klar ist.

1) Wieso nutzt man [mm] A^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |a_n| [/mm] und [mm] B^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |b_n| [/mm]
für den Beweis?

2) Wäre wegen [mm] Q_N \backslash \Delta_N \subset Q_N \backslash Q_{\lfloor N/2 \rfloor} [/mm] nicht auch

[mm] A_{N}B_{N} [/mm] - [mm] C_N [/mm] = [mm] \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash \Delta_N\} [/mm]

[mm] \le \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash Q_{\lfloor N/2 \rfloor}} [/mm] = [mm] A_{N}B_{N} [/mm] - [mm] A_{\lfloor N/2 \rfloor}B_{\lfloor N/2 \rfloor} [/mm] ?

3) Würde dann nicht auch die Folge [mm] (A_{N}B_{N}) [/mm]  konvergieren, die letzte Differenz somit gegen 0 für N [mm] \rightarrow \infty [/mm] gehen und man würde somit die Behauptung erhalten?

4) Wieso strebt [mm] A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] A^{\*}_{\lfloor N/2 \rfloor}B^{\*}_{\lfloor N/2 \rfloor} [/mm] gegen 0? Ist es so dass, weil [mm] (A^{\*}_{N}B^{\*}_{N}) [/mm] eine Cauchy-Folge ist, man zu jedem [mm] \epsilon [/mm] ein [mm] N_{\epsilon} [/mm] findet, sodass für alle n,m [mm] \ge N_{\epsilon} [/mm] gilt: [mm] |A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] |A^{\*}_{M}B^{\*}_{M}| [/mm] < [mm] \epsilon, [/mm] wobei [mm] N_{\epsilon} [/mm] so hoch gewählt werden müsste, dass N und N/2 [mm] \ge N_{\epsilon} [/mm] ?


Für eure Antworten wäre ich wie immer sehr dankbar! :-)


VG X3nion

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Frage zu Cauchy Produkt Reihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 22.11.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]