Frage zu Boolescher Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:09 Mi 23.11.2005 | Autor: | JPF |
Hallo,
wir haben hier eine Menge B = {#t, #f}, auf der eine Boolesche Algebra mit den Operatoren [mm] \neg, \vee [/mm] und [mm] \wedge [/mm] definiert ist.
Die Frage ist nun: "Wieviele der Operatoren sind mindestens erforderlich um die Semantik der Menge B nicht einzuschränken. Gilt die minimale Anzahl für beliebige Operatoren? Beweise Sie ihr Ergebnis durch Aufstellung einer Wertetafel."
So ganz weiß ich nicht, wie ich an das Problem herangehen soll. Heißt das, wenn ich einen Operator weglasse, jede Kombination von #t und #f durch die anderen beiden Operatoren dargestellt werden muss?
Wäre für Hilfe dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
> wir haben hier eine Menge B = {#t, #f}, auf der eine
> Boolesche Algebra mit den Operatoren [mm]\neg, \vee[/mm] und [mm]\wedge[/mm]
> definiert ist.
>
> Die Frage ist nun: "Wieviele der Operatoren sind mindestens
> erforderlich um die Semantik der Menge B nicht
> einzuschränken. Gilt die minimale Anzahl für beliebige
> Operatoren? Beweise Sie ihr Ergebnis durch Aufstellung
> einer Wertetafel."
>
> So ganz weiß ich nicht, wie ich an das Problem herangehen
> soll. Heißt das, wenn ich einen Operator weglasse, jede
> Kombination von #t und #f durch die anderen beiden
> Operatoren dargestellt werden muss?
> Wäre für Hilfe dankbar.
Hättest du deine Idee nicht mitgeliefert - ich hätte diese Aufgabe (zumindest so spät nachts) nicht verstanden. Aber ich glaube, du hast recht, die Frage ist also, ob es reicht, z. B. nur den Operator [mm] \neg [/mm] zu nehmen und damit aber trotzdem auch [mm] \vee [/mm] und [mm] \wedge [/mm] darstellen zu können.
Und so weit ich mich richtig erinnere, benötigt man mindestens zwei Operatoren, ob man nun [mm] \neg [/mm] und [mm] \vee [/mm] nimmt oder [mm] \neg [/mm] und [mm] \wedge [/mm] ist egal (denn [mm] \vee [/mm] lässt sich ja durch [mm] \wedge [/mm] darstellen und eben auch umgekehrt), ich glaube, [mm] \vee [/mm] und [mm] \wedge [/mm] alleine kann man aber nicht nehmen - wie würde sonst das [mm] \neg [/mm] dargestellt?
Mit einer Wertetafel kannst du dann wahrscheinlich zeigen, dass du eben [mm] \vee [/mm] durch [mm] \neg [/mm] und [mm] \wedge [/mm] darstellen kannst, aber wie du zeigst, dass es nicht mit einem Operator reicht, ist mir im Moment noch ein Rätsel.
Naja, vielleicht kommst du ja jetzt schon weiter?
Viele Grüße
Bastiane
|
|
|
|