www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Frage
Frage < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage: Exakte Sequenz, Dimension,...
Status: (Frage) beantwortet Status 
Datum: 19:41 Do 02.12.2004
Autor: nix-blicker

Wenn ich eine exakte Sequenz 0 [mm] \to [/mm]  U [mm] \stackrel{\alpha}{\to} [/mm]  V  [mm] \stackrel{\beta}{\to} [/mm] W habe, die bei U,V,W exakt ist.
1)
Das heißt doch, dass
Bild( [mm] \alpha)=Ker(\beta) [/mm] für exakt bei V
0=Ker( [mm] \alpha) [/mm] exakt bei U
[mm] Bild(\beta)=0 [/mm] exakt bei W

2)
[mm] \alpha [/mm] ist ja injektiv, denn ker( [mm] \alpha)=0. [/mm]
Wie aber kann ich zeigen, dass [mm] \beta [/mm] surjektiv ist?

3)
Wie zeig ich nun, das dim V = dim U + dim W ist und umgekehrt, dass dim U + dim W = dim V ?
Ich weiß, dass ich dafür die Dimensionsformel
dim V = dim [mm] Ker(\beta) [/mm] + dim [mm] Bild(\beta) [/mm] verwenden muss.
Wie aber zeige ich, dass dim U = dim [mm] Ker(\beta) [/mm] = dim [mm] Bild(\alpha) [/mm] und dimW = dim [mm] Bild(\beta) [/mm] (=0?) ??

        
Bezug
Frage: Exakte Sequenzen
Status: (Antwort) fertig Status 
Datum: 11:34 Fr 03.12.2004
Autor: Gnometech

Hallo!

Von einer kurzen exakten Sequenz spricht man eigentlich immer, wenn folgendes gemeint ist:

$0 [mm] \to [/mm] U [mm] \stackrel{\alpha}{\to} [/mm] V [mm] \stackrel{\beta}{\to} [/mm] W [mm] \to [/mm] 0$

Sonst macht "Exaktheit bei $W$" auch keinen Sinn...

Damit ist die Surjektivitaet von [mm] $\beta$ [/mm] klar, denn das Bild von $W$ unter der letzten Abbildung ist nur die 0, damit liegt ganz $W$ im Kern dieser Abbildung und damit ist ganz $W$ im Bild von [mm] $\beta$. [/mm] Fehlt die letzte 0 ist [mm] $\beta$ [/mm] im Allg. auch nicht surjektiv.

Die Dimensionen gehen mit der Dimensionsformel:

[mm] $\dim Bild(\beta) [/mm] = [mm] \dim [/mm] W$ ist klar wegen der Surjektivitaet.

Die Dimensionsformel fuer [mm] $\alpha$ [/mm] ergibt:

[mm] $\dim [/mm] U = [mm] \dim Kern(\alpha) [/mm] + [mm] \dim Bild(\alpha) [/mm] = [mm] \dim Kern(\beta)$ [/mm]

Denn der Kern von [mm] $\alpha$ [/mm] ist trivial [mm] ($\alpha$ [/mm] ist injektiv!!) und das Bild von [mm] $\alpha$ [/mm] ist wegen der Exaktheit gleich dem Kern von [mm] $\beta$. [/mm]

Alles zusammen ergibt nun die Behauptung.

Kannst Du ausserdem zeigen: $W [mm] \cong [/mm] V / [mm] \alpha(U)$? [/mm] ;-)

(Ich nehme mal an, dass es sich hier um Vektorraeume handelt und nicht etwa um Moduln oder so...)

Lars

Bezug
                
Bezug
Frage: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 Fr 03.12.2004
Autor: nix-blicker

Vielen Dank für deine Hilfe.

Nach langem Überlegen, bin ich zu dem selben Ergebnis gekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]