www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Fp ein Körper mit p prim?
Fp ein Körper mit p prim? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fp ein Körper mit p prim?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 05.11.2007
Autor: CON40

Aufgabe
Zeigen Sie: Die Menge [mm]\IF_{p}[/mm] ist ein Körper genau dann,wenn p eine Primzahl ist. Hierbei verzichten wir darauf,dass Sie das Assoziativgesetz und das Distributivgesetz nachweisen müssen,wenn p prim ist.

Hallo,
also ich sitze schon seit einiger Zeit vor der Aufgabe und bringe es nicht an einen rechten Ansatz.Ich weiß,dass Fp kein Körper ist wenn p nicht prim ist,da die Restklasse jedes echten Teilers von p ein Nullteiler ist, welcher kein Inverses bezüglich der Multiplikation hat. Nur wie bring ich das ordentlich zu Papier??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fp ein Körper mit p prim?: So z. B.
Status: (Antwort) fertig Status 
Datum: 15:41 Mo 05.11.2007
Autor: statler

Hi, [willkommenmr]

> Zeigen Sie: Die Menge [mm] \IF_{p}[/mm][/mm] [/mm] ist ein Körper genau dann,wenn p eine Primzahl ist. Hierbei verzichten wir darauf,dass Sie das Assoziativgesetz und das Distributivgesetz nachweisen müssen,wenn p prim ist.
> Hallo,
> also ich sitze schon seit einiger Zeit vor der Aufgabe und bringe es nicht an einen rechten Ansatz.Ich weiß,dass Fp kein Körper ist wenn p nicht prim ist,da die Restklasse jedes echten Teilers von p ein Nullteiler ist, welcher kein Inverses bezüglich der Multiplikation hat. Nur wie bring ich das ordentlich zu Papier??

Also wenn p keine Primzahl, dann ist p = n = rs mit nat. Zahlen n > r , s > 1. Wg. n > r , s sind [mm] \overline{r} [/mm] und [mm] \overline{s} \not= \overline{0}. [/mm] Aber [mm] \overline{r}\*\overline{s} [/mm] = [mm] \overline{rs} [/mm] = [mm] \overline{n} [/mm] = [mm] \overline{0}. [/mm] Also gibt es echte Nullteiler!

Versteho?

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]