www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Fourierreihen auf Lp-Räumen
Fourierreihen auf Lp-Räumen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen auf Lp-Räumen: Verständnisfrage
Status: (Frage) überfällig Status 
Datum: 22:37 Sa 22.04.2017
Autor: Nichtmathematiker

Hallo Zusammen!

Ich beschäftige mich gerade mit der Fourierreihenentwicklung [mm] 2\pi-periodischer [/mm] Funktionen.

Nun weiss ich bereits, dass für [mm] p\in (1,\infty) [/mm] die Fourierreihe einer Funktion [mm] f\in L^{p}(-\pi,\pi) [/mm] im Sinne der [mm] L^{p}-Norm [/mm] gegen die Funktion f selbst konvergiert.
Nun stellt sich mir aber die Frage, warum in den vielen Büchern lediglich der Fall p=2 behandelt wird?

Folgende Vermutungen habe ich dazu bereits aufstellen können:

- In physikalischen Kontexten interessieren uns nur Signale / Funktionen mit endlicher Energie, wobei diese Funktionen genau diejenigen aus [mm] L^{2} [/mm] sind.

- Bzgl. des [mm] L^{2} [/mm] Skalarproduktes sind die komplexen trigonometrischen Monome [mm] \phi_{k}(x)=\bruch{1}{\wurzel{2\pi}}e^{ikx}, k\in\IZ [/mm] eine Orthonormalbasis des [mm] L^{2}. [/mm] Dies ist insofern nützlich, da man ja [mm] f\in L^{2} [/mm] als Linearkombination dieser Monome darstellen will bzw. das Ziel der Fourierreihenentwicklung es ja ist, eine Funktion als Summe von Sinus- und Kosinustermen darzustellen.

- Da die [mm] L^{p} [/mm] -Räume ineinander eingebettet werden können und [mm] L^{p} \subset L^{2} [/mm] für [mm] p\in[3,\infty) [/mm] gilt, reicht es aus, den [mm] L^{2} [/mm] zu betrachten und Funktionen [mm] g\in L^{p} [/mm] als [mm] L^{2}-Funktionen [/mm] aufzufassen? (Bei dem Ansatz fehlt mir leider noch Einiges an theoretischem Hintergrund :( )

Gibt es aber noch "tiefgreifendere" Gründe, sich bei der Fourierreihenentwicklung lediglich auf [mm] L^{2} [/mm] zu beschränken oder "reicht" eine meiner Vermutungen schon aus?
Danke schon mal im Voraus für Anregungen und Hinweise.


        
Bezug
Fourierreihen auf Lp-Räumen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 25.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]