www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Fourierreihen
Fourierreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen: unklar, was zu tun
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 08.05.2012
Autor: clemenum

Aufgabe
Sei $f(z) = [mm] \sum_{-\infty }^{\infty } c_n z^n [/mm]  $    $r< |z| < R, r<1<R $
Sei [mm] $\tilde{f}(x) [/mm] = [mm] f(e^{ix} [/mm] )$ $ [mm] 0\le [/mm] x [mm] \le 2\pi \Rightarrow \tilde [/mm] {f}(x)  = [mm] \sum_{n = -\infty } ^{\infty} c_n e^{inx} [/mm] $  

Bestimme Res  [mm] $f_{z_0 } [/mm] $  für [mm] $z_0 [/mm] = 0 $

(Warnung: Dozent warnt vor Tippfehlern im Skript, ich habe in dieser Aufgabenstellung jedoch keinen gefunden )

Diese [mm] $f_{z_0}$ [/mm]  scheint hier keinen Sinn zu machen. Macht vielleicht das ganze versehen mit [mm] $\tilde{f}_{z_0} [/mm] $ Sinn ??

Es ist unklar, wo man hier das Residuum hernehmen soll, denn es gibt dafür keine konkreten Angaben, es ist doch nur bekannt, dass es eine Laurent-Entwicklung gibt in [mm] $z_0=0$, [/mm] sonst scheint nichts bekannt zu sein.

Hat dies jemand verstanden?



        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Mi 09.05.2012
Autor: fred97

Wahrscheinlich ist das Residuum von f in 0 gemeint. Wenn ja,so ist es= [mm] c_{-1} [/mm]

FRED

Bezug
                
Bezug
Fourierreihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 Mi 09.05.2012
Autor: clemenum

Wir habe das ja so definiert, dass das Residuum von f = [mm] $c_{-1} [/mm] $.

Die Frage ist, was hat das ganze mit [mm] $\tilde [/mm] {f} $ zu tun?
Was ist bei diesem Beispiel überhaupt gefragt, es kommt einfach nicht hervor??



Bezug
                        
Bezug
Fourierreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 11.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]