www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierreihen
Fourierreihen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:14 Mi 29.04.2009
Autor: can19

Aufgabe
Betrachte eine periodische Sägezahnfunktion f(t) im Intervall [mm] [\bruch{-T}{2} [/mm] , [mm] \bruch{+T}{2}], [/mm] die mit [mm] f(-T/2)=\f_0 [/mm] beginnt und im weiteren Verlauf linear bis zu ihrem Maximalwert [mm] f(T/2)=\f_0 [/mm] ansteigt. Bestimme die Fourierkoeffizienten [mm] a_0, a_{n} [/mm] und [mm] b_{n } [/mm] dieser Funktion gemäß der Entwicklung
[mm] \f(t)=\bruch{a_0}{2}+\summe_{n=1}^{\infty} a_{n} cos(n\nu_0 t)+\summe_{n=1}^{\infty} b_{n} sin(n\nu_0 [/mm] t)
mit
[mm] a_0 [/mm] = [mm] \bruch{2}{T}\integral_\bruch{-T}{2}^\bruch{T}{2}{f(t)dt} [/mm]

[mm] a_n =\bruch{2}{T}\integral_\bruch{-T}{2}^\bruch{T}{2}{f(t)cos(n\nu_0t)dt} [/mm]

[mm] b_n=\bruch{2}{T}\integral_\bruch{-T}{2}^\bruch{T}{2}{f(t)sin(n\nu_0t)dt} [/mm]
und der Grundfrequenz [mm] \nu_0=\bruch{2\pi}{T} [/mm]

Hallo,
Ich weiß leider nicht wie ich diese Aufgabe lösen soll! Bitte um eine Hilfestellung oder besser Ansatz!!

Danke im Voraus

        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:50 Do 30.04.2009
Autor: leduart

Hallo
Schreib erstmal die Fkt f(t) fuer die 2 Stuecke von f(t) auf. Wenn die wie ich aus dem unleserlichen Teil nicht sehen kann von -a nach +a oder umgekehrt ist, dann fallen da sie Punktsym ist schon mal alle [mm] a_n [/mm] weg.
Dann einfach die Integrale ausrechnen, die stehen da ja schon.
und f(t) ist doch einfach ne Gerade durch die Punkte (-T/2,?) und (+T/2, ?) ? fuer das unleserliche.
Sieh deine posts mit Vorschau an ob man sie lesen kann.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]