www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe, max, umrechnen,
Fourierreihe, max, umrechnen, < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe, max, umrechnen,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 01.05.2012
Autor: quasimo

Aufgabe
Für die Funktion [mm] f:[0,2\pi] [/mm] -> [mm] \IR [/mm] gebe man an, wie man die komplexen Fourierkoeffizienten [mm] c_k, [/mm] k [mm] \in \IZ, [/mm] aus den reellen Fourierkoeffizienten [mm] a_k, [/mm] k>=0 und [mm] b_k, [/mm] k>=1 berechnet und umgekehrt.
f(x) = [mm] max\{\pi - x, 0 \}, [/mm] 0 <= x <= 2 [mm] \pi [/mm]

1) reellen Fourier-Koeffizienten ausrechnen
[mm] a_k [/mm] = [mm] \frac{1}{\pi} \int_0^{2\pi} [/mm] f(x) * cos(kx) dx
[mm] b_k [/mm] = [mm] \frac{1}{\pi} \int_0^{2\pi} [/mm] f(x) * sin(kx) dx
k=1,2...


Für 0 <= x <=  [mm] \pi [/mm] ist [mm] \pi [/mm] - x die Funktion
Für [mm] \pi [/mm] <= x <= 2 [mm] \pi [/mm] ist 0 die Funkion

[mm] a_k [/mm] = [mm] \frac{1}{\pi} \int_0^{\pi} (\pi [/mm] - x) * cos(kx) dx = [mm] \frac{1}{\pi} \int_0^{\pi} (\pi [/mm] cos(kx) [mm] -\frac{1}{\pi} \int_0^{\pi} [/mm] (x) * cos(kx) dx  =

[mm] \frac{1}{\pi} [/mm] * [mm] (\pi [/mm] * [mm] \frac{sin(k\pi)}{k} [/mm] )- [mm] \frac{1}{\pi} [/mm] * [mm] \frac{k*\pi*sin(k\pi) + cos(k\pi)}{k^2}= \frac{sin(k\pi)}{k} [/mm] - [mm] \frac{k*\pi*sin(k\pi) + cos(k\pi)}{\pi k^2}= [/mm]

[mm] \frac{k * \pi *sin(k \pi) - k*\pi*sin(k\pi) + cos(k\pi)}{\pi k^2} [/mm] = [mm] \frac{cos(k\pi)}{\pi k^2} [/mm]



[mm] b_k [/mm] = [mm] \frac{1}{\pi}\int_0^{\pi} (\pi [/mm] - x) * sin(kx) dx= [mm] \frac{1}{\pi}\int_0^{\pi} (\pi) [/mm] * sin(kx) dx - [mm] \frac{1}{\pi}\int_0^{\pi} [/mm]  (x) * sin(kx) dx= [mm] -\frac{1}{\pi} [/mm] *( [mm] \frac{\pi cos(k\pi}{k}) [/mm]  - [mm] \frac{1}{\pi} \frac{sin(k\pi)-k\pi*cos(k\pi)}{k^2}= [/mm]

- [mm] \frac{cos(k\pi}{k} [/mm] - [mm] \frac{1}{\pi} \frac{sin(k\pi)-k\pi*cos(k\pi)}{\pi * k^2}=\frac{- \pi k * cos(k \pi) - sin(k\pi)+k\pi*cos(k\pi)}{\pi * k^2} [/mm]

[mm] =\frac{- sin(k\pi)}{\pi * k^2} [/mm]

und

[mm] a_k [/mm] = [mm] \frac{1}{\pi} \int_\pi^{2\pi} [/mm] 0 dx =0
[mm] b_k [/mm] = [mm] \frac{1}{\pi}\int_\pi^{2\pi} [/mm]  0 dx =0

2) wie kann man nun die komplexen Fourierkoeffizienten [mm] c_k [/mm] ausrechnet aus den reellen ??
[mm] c_k [/mm] = <f, [mm] e^{ikx}> =\frac{1}{2\pi} [/mm] * [mm] \int_0^{2\pi} [/mm] f(x) [mm] e^{-kx} [/mm] dx



        
Bezug
Fourierreihe, max, umrechnen,: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Di 01.05.2012
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
e^{ikx}=cos(kx}+isin{kx}
Gruss leduart

Bezug
                
Bezug
Fourierreihe, max, umrechnen,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 01.05.2012
Autor: quasimo

[mm] c_k [/mm]  = <f, [mm] e^{ikx}> [/mm] =<f,cos(kx)+i*sin(kx)> = <f,cos(kx)> + -i* <f, sin(kx)> = [mm] a_k [/mm] /2 + (-i)*  [mm] b_k/ [/mm] 2 = [mm] \frac{cos(k\pi)}{2 \pi k^2} [/mm] +(-i) [mm] \frac{- sin(k\pi)}{2 \pi \cdot{} k^2} =\frac{cos(k\pi) + i sin(k\pi)}{2\pi k^2} [/mm]

So?
LG

Bezug
                        
Bezug
Fourierreihe, max, umrechnen,: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Di 01.05.2012
Autor: MathePower

Hallo quasimo,

>  [mm]c_k[/mm]  = <f, [mm]e^{ikx}>[/mm] =<f,cos(kx)+i*sin(kx)> = <f,cos(kx)> +

> -i* <f, sin(kx)> = [mm]a_k[/mm] /2 + (-i)*  [mm]b_k/[/mm] 2 =


Bis hierher ist alles richtig.


> [mm]\frac{cos(k\pi)}{2 \pi k^2}[/mm] +(-i) [mm]\frac{- sin(k\pi)}{2 \pi \cdot{} k^2} =\frac{cos(k\pi) + i sin(k\pi)}{2\pi k^2}[/mm]

>


Die Fourierkoeffizienten musst Du nochmal nachrechnen.

  

> So?
>  LG


Gruss
MathePower

Bezug
                                
Bezug
Fourierreihe, max, umrechnen,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Di 01.05.2012
Autor: quasimo

Ich hab nochmal das selbe rausbkommen für die Koeffizienten ( siehe beitrag 1 ) da steht meine Berechnung-!!

Meinst du weil ich :
Für 0 <= x <=  $ [mm] \pi [/mm] $ ist $ [mm] \pi [/mm] $ - x die Funktion
Für $ [mm] \pi [/mm] $ <= x <= 2 $ [mm] \pi [/mm] $ ist 0 die Funkion
Und das hier jetzt nicht berücksichtigt habe??

Bezug
                                        
Bezug
Fourierreihe, max, umrechnen,: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Di 01.05.2012
Autor: MathePower

Hallo quasimo,


> Ich hab nochmal das selbe rausbkommen für die
> Koeffizienten ( siehe beitrag 1 ) da steht meine
> Berechnung-!!
>  
> Meinst du weil ich :
>  Für 0 <= x <=  [mm]\pi[/mm] ist [mm]\pi[/mm] - x die Funktion
>  Für [mm]\pi[/mm] <= x <= 2 [mm]\pi[/mm] ist 0 die Funkion
> Und das hier jetzt nicht berücksichtigt habe??


Nein, das meine ich nicht.

Bei der Berechnung des Koeffizienten [mm]a_{k}[/mm] hast Du zwar
das zweite Integral richtig berechnet, jedoch dann
beim Einsetzen der Integrationsgrenzen die
untere Grenze 0 nicht berücksichtigt.


Gruss
MathePower

Bezug
                                        
Bezug
Fourierreihe, max, umrechnen,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Di 01.05.2012
Autor: quasimo

achja ;)

[mm] a_k [/mm] =  [mm] \frac{cos(k\pi)}{\pi k^2}+ \frac{1}{\pi k^2} =\frac{cos(k\pi)+1}{\pi k^2} [/mm]

bei [mm] b_k [/mm] verschwindet die untere Grenze beim addieren.
bleibt [mm] b_k [/mm] = $ [mm] =\frac{- sin(k\pi)}{\pi \cdot{} k^2} [/mm] $

> Für 0 <= x <=   [mm] \pi [/mm] ist  [mm] \pi [/mm]  - x die Funktion
> Für $ [mm] \pi [/mm]  <= x <= 2  [mm] \pi [/mm]  ist 0 die Funkion

Also ist [mm] c_k [/mm] auch 0  für  [mm] \pi [/mm]  <= x <= 2
Und [mm] c_k [/mm] für 0 <= x <=   [mm] \pi [/mm]  

$ [mm] c_k [/mm] $  = $ [mm] a_k [/mm] $ /2 + (-i)*  $ [mm] b_k/ [/mm] $ 2 [mm] =\frac{cos(k\pi)+1}{2* \pi k^2} [/mm] - i [mm] *\frac{- sin(k\pi)}{\pi \cdot{} k^2} [/mm]

Passts?

Bezug
                                                
Bezug
Fourierreihe, max, umrechnen,: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Di 01.05.2012
Autor: MathePower

Hallo quasimo,

> achja ;)
>  
> [mm]a_k[/mm] =  [mm]\frac{cos(k\pi)}{\pi k^2}+ \frac{1}{\pi k^2} =\frac{cos(k\pi)+1}{\pi k^2}[/mm]
>  

Der Koeffizient [mm]a_{k}[/mm] muss doch lauten:

[mm]a_k=\frac{1\blue{-}cos(k\pi)}{\pi k^2}[/mm]


> bei [mm]b_k[/mm] verschwindet die untere Grenze beim addieren.
>  bleibt [mm]b_k[/mm] = [mm]=\frac{- sin(k\pi)}{\pi \cdot{} k^2}[/mm]
>  


Hier ist Dir derselbe Fehler passiert,
wie bei der Berechnung des Koeffizienten[mm]a_{k}[/mm],
den ich in meinem letzten Post festgestellt habe,


> > Für 0 <= x <=   [mm]\pi[/mm] ist  [mm]\pi[/mm]  - x die Funktion
>  > Für $ [mm]\pi[/mm]  <= x <= 2  [mm]\pi[/mm]  ist 0 die Funkion

>
> Also ist [mm]c_k[/mm] auch 0  für  [mm]\pi[/mm]  <= x <= 2
> Und [mm]c_k[/mm] für 0 <= x <=   [mm]\pi[/mm]  
>
> [mm]c_k[/mm]  = [mm]a_k[/mm] /2 + (-i)*  [mm]b_k/[/mm] 2 [mm]=\frac{cos(k\pi)+1}{2* \pi k^2}[/mm]
> - i [mm]*\frac{- sin(k\pi)}{\pi \cdot{} k^2}[/mm]
>  
> Passts?


Nein.


Gruss
MathePower

Bezug
                                                
Bezug
Fourierreihe, max, umrechnen,: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Di 01.05.2012
Autor: leduart

Hallo quasimo
wenn ich FR ausrechne lass ich mir immer am ende von irgendnem Programm etwa wolfram alpha die Summe der ersten paar glieder plotten. dann sieht man gleich, ob man sich verrechnet hat.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]