Fourierreihe Sägezahn < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Mo 05.10.2009 | Autor: | Munzijoy |
Aufgabe | Für die im Bild gezeigte Sägezahnfunktion ist die reelle Form der Fourier-Reihe bis zur 5. Harmonischen zu berechnen! | [Dateianhang nicht öffentlich]
Ich habe mich heute an dieser Aufgabe versucht, und wollte sie mit der Standardformel für F.-Reihen rechnen, ohne die vorgefertigte Formel für diese spezielle Sägezahnfunktion zu benutzen. Meiner Meinung nach ist [mm] f(t)=\begin{cases} 2U_{Spitze} & n \le t < n+0,5 \\ 0 & n+0,5 \le t < n+1 \end{cases}. [/mm] Auf jeden Fall [mm] \bruch{2U_{Spitze}}{ms}*t [/mm] im Intervall, in dem die Funktion [mm] \not= [/mm] 0 ist.
Ich habe folgendes für den Gleichanteil berechnet: [mm] a_{0}=\integral_{0}^{0,5}{2\bruch{U_{Spitze}}{ms}t dt}=\bruch{1}{4}*\bruch{U_{Spitze}}{ms}, [/mm] was ja meiner Meinung nach auch dem Mittelwert entspricht. Nun aber [mm] a_{n}: \integral_{0}^{0,5}{2\bruch{U_{Spitze}}{ms}t*cos(nt)dt} [/mm] Hier komme ich bereits nicht weiter. Es ergibt sich laut Integraltafel ein Integral mit t im Nenner, d.h. ich kann die untere Integrationsgrenze nicht einsetzen, da sie 0 ist. Ohnehin sieht meine Lösung dann vollkommen anders aus, als die vorgegebene zu sein scheint.
Ist mein Ansatz richtig, und wie komme ich auf [mm] a_{n}?
[/mm]
Vielen Dank
Munzi
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:52 Mo 05.10.2009 | Autor: | leduart |
hallo
Deine Integrale kannst du mitpartieller Integration loesen.
u'=cosnt v=t dann ist es einfach.
es fehlt der faktor 2/T vor deinem Integral fuer [mm] a_n
[/mm]
wie du ein t in den Nenner kriegst ist mir schleierhaft?
Gruss leduart
|
|
|
|
|
Hallo Munzijoy,
> Für die im Bild gezeigte Sägezahnfunktion ist die reelle
> Form der Fourier-Reihe bis zur 5. Harmonischen zu
> berechnen! [Dateianhang nicht öffentlich]
> Ich habe mich heute an dieser Aufgabe versucht, und wollte
> sie mit der Standardformel für F.-Reihen rechnen, ohne die
> vorgefertigte Formel für diese spezielle Sägezahnfunktion
> zu benutzen. Meiner Meinung nach ist [mm]f(t)=\begin{cases} 2U_{Spitze} & n \le t < n+0,5 \\ 0 & n+0,5 \le t < n+1 \end{cases}.[/mm]
> Auf jeden Fall [mm]\bruch{2U_{Spitze}}{ms}*t[/mm] im Intervall, in
> dem die Funktion [mm]\not=[/mm] 0 ist.
> Ich habe folgendes für den Gleichanteil berechnet:
> [mm]a_{0}=\integral_{0}^{0,5}{2\bruch{U_{Spitze}}{ms}t dt}=\bruch{1}{4}*\bruch{U_{Spitze}}{ms},[/mm]
> was ja meiner Meinung nach auch dem Mittelwert entspricht.
> Nun aber [mm]a_{n}: \integral_{0}^{0,5}{2\bruch{U_{Spitze}}{ms}t*cos(nt)dt}[/mm]
Aus dem Bild entnehme ich, daß die Periode T=1 ist.
Ausserdem fehlt, wie leduart schon erwähnt hatte, ein Faktor [mm]\bruch{2}{T}[/mm].
So mit ergibt sich:
[mm]a_{n}=\red{\bruch{2}{T}} \integral_{0}^{T/2}{2 *U_{Spitze}*t*cos(n*\red{\omega}*t) \ dt}[/mm]
mit [mm]\omega*T=2*\pi[/mm]
> Hier komme ich bereits nicht weiter. Es ergibt sich laut
> Integraltafel ein Integral mit t im Nenner, d.h. ich kann
> die untere Integrationsgrenze nicht einsetzen, da sie 0
> ist. Ohnehin sieht meine Lösung dann vollkommen anders
> aus, als die vorgegebene zu sein scheint.
> Ist mein Ansatz richtig, und wie komme ich auf [mm]a_{n}?[/mm]
>
> Vielen Dank
> Munzi
Gruss
MathePower
|
|
|
|