www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierkoeffizienten bestimmen
Fourierkoeffizienten bestimmen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Sa 16.03.2013
Autor: chillkroete87

Aufgabe
Berechnen sie die reelle Fourier-Reihe der [mm] 2\pi [/mm] periodischen Funktion

f(x) = pi/2 für x [mm] \varepsilon [/mm] [-pi/2 , pi/2,

f(x)= 0       für x  [mm] \varepsilon [/mm] [pi/2 , 3 pi /2


Hallo,

das generelle Vorgehen ist mir bei der Berechnung einer reellen Fourier-Reihe klar. Habe bereits erkannt, dass b,n= 0 ist.

Ich habe nur immer das Problem, dass ich nicht genau weiß, welche Grenzen ich für die Integrale nehmen soll.
Manchmal steht vor dem Integral 1/Pi, wann anders wieder 2/Pi.
Ein Bekannter sagte mir, dass man manchmal die Grenzen etwas verschieben muss, da man sonst Null in einem Integral rausbekommst, bei dem eigentlich nicht Null rauskommen darf. Oder, dass man die Grenzen abändern muss wenn eine Unstetigkeit im Graphen vorkommt.

Für eine Generelle Erklärung wie ich die Grenzen wähle und die zu verwendenden Grenzen der obenstehenden Aufgabe wäre ich sehr dankbar.

Gruß


        
Bezug
Fourierkoeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Sa 16.03.2013
Autor: steppenhahn

Hallo,


> Berechnen sie die reelle Fourier-Reihe der [mm]2\pi[/mm]
> periodischen Funktion
>  
> f(x) = pi/2 für x [mm]\varepsilon[/mm] [-pi/2 , pi/2,
>  
> f(x)= 0       für x  [mm]\varepsilon[/mm] [pi/2 , 3 pi /2
>  
> Hallo,
>  
> das generelle Vorgehen ist mir bei der Berechnung einer
> reellen Fourier-Reihe klar. Habe bereits erkannt, dass b,n=
> 0 ist.

Genau. Allgemein benutzt du für [mm] $2\pi$-periodische [/mm] Funktionen $f$ die Formeln

[mm] $a_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \cos(nx) [/mm] dx$   $(n [mm] \ge [/mm] 0)$
[mm] $b_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \sin(nx) [/mm] dx$   $(n [mm] \ge [/mm] 1)$

Daran kannst du auch erkennen:
f gerade (achsensymmetrisch zur y-Achse, d.h. f(-x) = f(x)) --> [mm] $b_n [/mm] = 0$
f ungerade (punktsymm. zum Ursprung, d.h. f(-x) = -f(x)) --> [mm] $a_n [/mm] = 0$.

Bei dir liegt der erste Fall vor.


> Ich habe nur immer das Problem, dass ich nicht genau weiß,
> welche Grenzen ich für die Integrale nehmen soll.
> Manchmal steht vor dem Integral 1/Pi, wann anders wieder
> 2/Pi.

Vor dem Integral muss immer stehen:

1/(Hälfte der Periodizität).

(Bei dir ist hier Periodizität = [mm] $2\pi$ [/mm] ).
Du musst auch entsprechend genau über eine Periodizität integrieren (also über ein Intervall der Länge [mm] $2\pi$. [/mm] Welches Intervall du hier genau nimmst, ist EGAL! D.h. du kannst auch über $[0, [mm] 2\pi]$, $[-\pi,\pi]$ [/mm] oder [mm] $[\pi/2, 5\pi/2]$ [/mm] integrieren (*). Meistens biete sich aber [mm] $[-\pi, \pi]$ [/mm] an. Dies liegt daran, dass Integration von ungeraden Funktionen über solch ein Intervall Null ergibt).

>  Ein Bekannter sagte mir, dass man manchmal die Grenzen
> etwas verschieben muss, da man sonst Null in einem Integral
> rausbekommst, bei dem eigentlich nicht Null rauskommen
> darf.

Das stimmt nicht. Die Formeln oben gelten allgemein.

> Oder, dass man die Grenzen abändern muss wenn eine
> Unstetigkeit im Graphen vorkommt.

Du musst die Grenzen nicht abändern. Allerdings musst du dein Integral aufteilen. Kleines Beispiel: Wenn du die Funktion $f(x) = x$ auf [mm] $[0,2\pi]$ [/mm] gegeben hast, und in der Aufgabe steht dass die [mm] $2\pi$-periodisch [/mm] fortgesetzt wird, dann darfst du natürlich    NICHT    schreiben:

[mm] $a_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{\pi}x* \cos(nx) [/mm] dx$

Weil die Funktion ja nur auf dem Intervall [mm] $[0,2\pi]$ [/mm] als $f(x) = x$ definiert ist, und nicht auf [mm] $[-\pi,\pi]$. [/mm]

--> Abhilfe geht dadurch, dass du entweder die Grenzen geeignet verschiebst, siehe (*) (das meinte dein Kommilitone vermutlich), also:

[mm] $a_n [/mm] = [mm] \frac{1}{\pi}\int_{0}^{2\pi}x* \cos(nx) [/mm] dx$

Das ist RICHTIG, weil die Funktion $f(x)$ eben auf [mm] $[0,2\pi]$ [/mm] als f(x) = x definiert wurde.

--> Abhilft geht aber auch dadurch, dass du das Integral aufteilst. D.h. du MUSST die Grenzen nicht verschieben, aber es ist natürlich viel angenehmer als diese Variante:

[mm] $a_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{0}(x+2\pi)* \cos(nx) [/mm] dx + [mm] \frac{1}{\pi}\int_{0}^{\pi}x* \cos(nx) [/mm] dx$


-----

Bei deiner Aufgabe oben empfiehlt es sich, den Integrationsbereich auf [mm] [-\pi/2, 3\pi/2] [/mm] zu verschieben, weil du dort die Funktion kennst. Du musst dann nichtsdestotrotz das Integral in die beiden Bereiche aufteilen, wo die Funktion verschieden definiert ist.

Viele Grüße,
Stefan

Bezug
                
Bezug
Fourierkoeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Sa 16.03.2013
Autor: chillkroete87

Hallo,

danke für die ausführliche Antwort.

Also lautet das Integral für a,n

[mm] a,n=\bruch{1}{2\pi/2} \integral_{-\pi/2}^{\pi/2}{ \pi/2 * cos(kx) dx} [/mm] + [mm] \bruch{1}{2\pi/2}\integral_{\pi/2}^{3\pi/2}{ 0 * cos(kx) dx} [/mm] ?

Das [mm] 1/2\pi/2 [/mm] kürze ich natürlich

Bezug
                        
Bezug
Fourierkoeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Sa 16.03.2013
Autor: steppenhahn

Hallo,


> Hallo,
>  
> danke für die ausführliche Antwort.
>  
> Also lautet das Integral für a,n
>  
> [mm]a,n=\bruch{1}{2\pi/2} \integral_{-\pi/2}^{\pi/2}{ \pi/2 * cos(kx) dx}[/mm]
> + [mm]\bruch{1}{2\pi/2}\integral_{\pi/2}^{3\pi/2}{ 0 * cos(kx) dx}[/mm]
> ?
>  
> Das [mm]1/2\pi/2[/mm] kürze ich natürlich

Ja, das ist richtig.

Viele Grüße,
Stefan

Bezug
                
Bezug
Fourierkoeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Sa 16.03.2013
Autor: chillkroete87

Aufgabe
Gegeben sei eine ungerade [mm] 2\Pi [/mm] Periodische Funktion f mit

f(x)= x           ,für  0 [mm] \le [/mm] x [mm] \le \Pi/2 [/mm]
f(x)= [mm] (\Pi [/mm] - x), für [mm] \Pi/2 [/mm] < [mm] x\le\Pi [/mm]

Die Aufgabe zuvor habe ich nun voll verstanden.

Diese ist mir nun noch untergekommen. Ich habe eine Lösung dazu, da ich sie schonmal im Tutorium gerechnet habe.

In der Lösung steht allerdings:

B,n= [mm] \bruch{2}{\Pi}\integral_{0}^{\pi/2}{x*sin(nx) dx} [/mm] + [mm] \bruch{2}{\Pi}\integral_{\pi/2}^{\pi}{(\pi-x)*sin(nx) dx} [/mm]

Ohne groß über die Aufgabe nachzudenken, hätte ich vor die Integrale [mm] \bruch{1}{\pi} [/mm] geschrieben.

In der Aufgabenstellung steht ja [mm] 2\pi [/mm] periodisch. Nach deiner Erklärung ergäbe sich [mm] \bruch{1}{T/2}=\bruch{1}{2\pi/2}=\bruch{1}{\pi} [/mm]

Besten Dank vorab.

Bezug
                        
Bezug
Fourierkoeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 16.03.2013
Autor: steppenhahn

Hallo,

> Gegeben sei eine ungerade [mm]2\Pi[/mm] Periodische Funktion f mit
>  
> f(x)= x           ,für  0 [mm]\le[/mm] x [mm]\le \Pi/2[/mm]
>  f(x)= [mm](\Pi[/mm] -
> x), für [mm]\Pi/2[/mm] < [mm]x\le\Pi[/mm]


> In der Lösung steht allerdings:
>  
> B,n= [mm]\bruch{2}{\Pi}\integral_{0}^{\pi/2}{x*sin(nx) dx}[/mm] +
> [mm]\bruch{2}{\Pi}\integral_{\pi/2}^{\pi}{(\pi-x)*sin(nx) dx}[/mm]
>  
> Ohne groß über die Aufgabe nachzudenken, hätte ich vor
> die Integrale [mm]\bruch{1}{\pi}[/mm] geschrieben.


Bei der Lösung wurden einige Schritte ausgelassen.
Vielleicht solltest du dir als erstes nochmal überlegen, was dein Ansatz für [mm] b_n [/mm] gewesen wäre. Vermutlich hättest du nämlich nicht nur [mm] $1/\pi$ [/mm] vor die Integrale geschrieben, sondern auch andere Grenzen gehabt.

In der Aufgabe ist von einer [mm] $2\pi$-periodischen, [/mm] ungeraden Funktion die Rede.
Sie wird aber nur auf [mm] $[0,\pi]$ [/mm] angegeben, und zwar weil wir aufgrund der Eigenschaft "ungerade" wissen, wie sie dann auf [mm] $[-\pi,0]$ [/mm] aussieht: $f(-x) = -f(x)$.

Also wäre der Ansatz:

[mm] $b_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \sin(nx) [/mm] dx$.

(wir integrieren über ein Intervall der Länge [mm] $2\pi$, [/mm] also Vorfaktor [mm] $1/\pi$). [/mm]
Weil sowohl $f$ als auch [mm] $\sin(nx)$ [/mm] ungerade sind, ist das Produkt $f(x) [mm] \sin(nx)$ [/mm] wieder gerade. Daher gilt:

[mm] $b_n [/mm] = [mm] \frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \sin(nx) [/mm] dx = [mm] 2*\frac{1}{\pi}\int_{0}^{\pi}f(x) \sin(nx) [/mm] dx$.

...Und jetzt wurde in der Lösung das Integral aufgespalten.





Viele Grüße,
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]