www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Fourierkoeffizienten
Fourierkoeffizienten < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizienten: Berechnen von Koeff.
Status: (Frage) beantwortet Status 
Datum: 15:27 Di 23.03.2010
Autor: Babybel73

Hallo zusammen

Kann mir mal jemand ganz einfach erklären, wie ich die Fourierkoeffizienten von f(x)=sin(x) berechnen kann??

Liebe Grüsse

        
Bezug
Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Di 23.03.2010
Autor: MathePower

Hallo Babybel73,

> Hallo zusammen
>  
> Kann mir mal jemand ganz einfach erklären, wie ich die
> Fourierkoeffizienten von f(x)=sin(x) berechnen kann??


Da brauchst Du nichts zu berechnen,
denn [mm]f\left(x\iright)[/mm] und die zugehörige Fourierreihe sind identisch.


>  
> Liebe Grüsse


Gruss
MathePower

Bezug
                
Bezug
Fourierkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Di 23.03.2010
Autor: Babybel73

Hallo MathePower

Das heisst es gibt keine Fourierkoeffizienten???

Und wie sind denn die Fourierkoeffizienten bei

[mm] f(x)=\begin{cases} \bruch{-2}{\pi}+1, & \mbox{falls } x<\pi \mbox{ gerade} \\ \bruch{2}{\pi}-3, & \mbox{falls } x\ge\pi \mbox{ ungerade} \end{cases} [/mm]

Liebe Grüsse

Bezug
                        
Bezug
Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Di 23.03.2010
Autor: fred97


> Hallo MathePower
>  
> Das heisst es gibt keine Fourierkoeffizienten???
>

Allgemein sind die F.-Koeff.:

          [mm] $a_n [/mm] = [mm] \bruch{1}{\pi}\integral_{- \pi}^{\pi}{f(x)cos(nx) dx}$ [/mm]  für n=0,1,2, ...

und

         [mm] $b_n [/mm] = [mm] \bruch{1}{\pi}\integral_{- \pi}^{\pi}{f(x)sin(nx) dx}$ [/mm]  für n=1,2, ...

Ist f(x) =sin(x), so sind alle [mm] a_n=0, [/mm] es ist [mm] b_1=1 [/mm] und [mm] b_n=0 [/mm] für n [mm] \ge [/mm] 2

Wenn Du das nachrechnen magst, so benutze die Orthogonalitätsrelationen:

               http://www.mathepedia.de/Orthogonalitaetsrelationen.aspx

          






> Und wie sind denn die Fourierkoeffizienten bei
>  
> [mm]f(x)=\begin{cases} \bruch{-2}{\pi}+1, & \mbox{falls } x<\pi \mbox{ gerade} \\ \bruch{2}{\pi}-3, & \mbox{falls } x\ge\pi \mbox{ ungerade} \end{cases}[/mm]


Ist f wirklich so gegeben ?

FRED

>  
> Liebe Grüsse


Bezug
                                
Bezug
Fourierkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Di 23.03.2010
Autor: Babybel73

Hallo Fred

Ja f ist wirklich so gegeben. Wie kann ich das nun machen?

Bezug
                                        
Bezug
Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 23.03.2010
Autor: leduart

Hallo
da reelle zahlen nicht gerade oder ungerade sind, ist das was da steht nicht verständlich.
ohne den Zusatz, nimmst du an, dass die fkt periodisch fortgesetzt wird, Periode [mm] 2\pi [/mm] und rechnest brav die Koeffizeinten nach der formel aus, die du ja hast, dabei musst du dein integral natürlich in 2 Teile zerlegen.
Besser wär, du würdest die Aufgabe wörtlich mit allem umgebenden Text posten.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]