www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourieranalyse
Fourieranalyse < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourieranalyse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Mo 06.02.2012
Autor: photonendusche

Aufgabe
Bestimmen Sie das n-te Fourierpolynom der folgenden [mm] 4\pi- [/mm] periodischen Funktion:
[mm] f(x)=\begin{cases} 1+x^{2}, & \mbox{} 0\le x < 2\pi \mbox{} \\ 1-(x-4\pi)^{2}, & \mbox{} 2\pi \le x < 4\pi \mbox{} \end{cases} [/mm]

Für [mm] 0\le [/mm] x < [mm] 2\pi [/mm] ist die Funktion ja gerade, d.h. doch, dass [mm] b_{k} [/mm] wegfällt, aber es gibt ja noch ein [mm] b_{k} [/mm] für den zweiten Teil der Funktion. Wie reagiert man, wie schreibt man [mm] b_{k} [/mm] allgemein auf?
Das [mm] a_{k} [/mm] ist ja für beide Teilfunktionen vorhanden, jedoch gibt es doch bei der "End-Fourierapproximation" nur ein [mm] a_{k}. [/mm] Wie "verbindet" man beide [mm] a_{k}'s? [/mm]


        
Bezug
Fourieranalyse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mo 06.02.2012
Autor: MathePower

Hallo photonendusche,

> Bestimmen Sie das n-te Fourierpolynom der folgenden [mm]4\pi-[/mm]
> periodischen Funktion:
>  [mm]f(x)=\begin{cases} 1+x^{2}, & \mbox{} 0\le x < 2\pi \mbox{} \\ 1-(x-4\pi)^{2}, & \mbox{} 2\pi \le x < 4\pi \mbox{} \end{cases}[/mm]
>  
> Für [mm]0\le[/mm] x < [mm]2\pi[/mm] ist die Funktion ja gerade, d.h. doch,
> dass [mm]b_{k}[/mm] wegfällt, aber es gibt ja noch ein [mm]b_{k}[/mm] für
> den zweiten Teil der Funktion. Wie reagiert man, wie
> schreibt man [mm]b_{k}[/mm] allgemein auf?
>  Das [mm]a_{k}[/mm] ist ja für beide Teilfunktionen vorhanden,
> jedoch gibt es doch bei der "End-Fourierapproximation" nur
> ein [mm]a_{k}.[/mm] Wie "verbindet" man beide [mm]a_{k}'s?[/mm]
>  


Die [mm]a_{k}, \ b_{k}[/mm] ergeben sich doch,
wenn über das ganze Intervall [mm]\left[0;4\pi\right][/mm] integriert wird.


Gruss
MathePower

Bezug
                
Bezug
Fourieranalyse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 06.02.2012
Autor: photonendusche

Ich verstehe es nicht :-(.
Ich erhalte doch für für das n-te Fourierpolynom einen Ausdruck.
Ich habe aber für die erste Teilfunktion eine gerade Teilfunktion , somit ist [mm] b_{k}=0 [/mm] und es existiert ein [mm] a_{k}. [/mm]
Für die zweite Teilfunktion existiert ein [mm] b_{k} [/mm] und ein anderes [mm] a_{k}. [/mm]
Bildet man zwei verschiedene Fourierpolynome?

Bezug
                        
Bezug
Fourieranalyse: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Di 07.02.2012
Autor: fred97


> Ich verstehe es nicht :-(.
>  Ich erhalte doch für für das n-te Fourierpolynom einen
> Ausdruck.
>  Ich habe aber für die erste Teilfunktion eine gerade
> Teilfunktion , somit ist [mm]b_{k}=0[/mm] und es existiert ein
> [mm]a_{k}.[/mm]
>  Für die zweite Teilfunktion existiert ein [mm]b_{k}[/mm] und ein
> anderes [mm]a_{k}.[/mm]
>  Bildet man zwei verschiedene Fourierpolynome?

Unsinn. Du mußt über das ganze Intervall $[0, 4 [mm] \pi]$ [/mm] integrieren !

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]