Fourier Reihen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:54 So 03.10.2004 | Autor: | Hanno |
Hi!
Ich habe eine Frage zu dem Artikel über Fourier Reihen von www.mathe-seiten.de, Seite 9.
Die Funktion [mm] $f_k(x)$ [/mm] ist definiert als:
[mm] $f_k(x)=\summe_{n=-k}^{k}{c_n\cdot e^{-i\cdot n\cdot x}}$
[/mm]
Nun wird in der vierten Rechenzeile im Kapitel 1.5: Konvergenz folgende Umformung vorgenommen:
[mm] $\integral_{-\pi}^{\pi}{f_k(x)\cdot\overline{f_k(x)}}=2\cdot\pi\cdot\summe_{n=-k}^{k}{c_n\cdot\overline{c_n}}$
[/mm]
Ich habe schon viel versucht, aber ich kann diesen Schritt einfach nicht nachvollziehen. Vielleicht übersehe ich etwas, aber jetzt habe ich mich entschlossen, mir ein wenig Hilfe zu holen
Danke schonmal!
Liebe Grüße,
Hanno
|
|
|
|
Grüße!
Ein Prof. von mir hat mal gesagt: Ausrechnen ist der Weg zur Wahrheit!
Also, schauen wir uns zunächst an, was wir haben. [mm] $f_k(x)$ [/mm] ist ja als Reihe schon definiert - was ist dann [mm] $\bar{f_k(x)}$? [/mm] Da komplexe Konjugation ein sogenannter Automorphismus von [mm] $\IC$ [/mm] ist, sich also mit Bildung von Summen und Produkten verträgt, erhalten wir:
[mm] $\bar{f_k(x)} [/mm] = [mm] \bar{\sum_{n=-k}^k c_n e^{-inx}} [/mm] = [mm] \sum_{n=-k}^k \bar{c_n} [/mm] e ^{inx}$
Für den letzten Schritt brauchten wir die Definition der Eulerschen Formel und die Tatsache, dass Sinus und Cosinus ungerade bzbw. gerade sind. Was ich meine ist: für reelle $x$ gilt:
[mm] $e^{ix} [/mm] = [mm] \cos [/mm] x + i [mm] \sin [/mm] x [mm] \Rightarrow \bar{e^{ix}} [/mm] = [mm] \cos [/mm] x - i [mm] \sin [/mm] x = [mm] \cos [/mm] (-x) + i [mm] \sin [/mm] (-x) = [mm] e^{-ix}$
[/mm]
Und damit läßt sich nun das Integral bequem ausrechnen:
[mm] $\int_{- \pi}^\pi f_k(x) \bar{f_k(x)} [/mm] dx = [mm] \sum_{n=-k}^k c_n \bar{c_n} \int_{- \pi}^\pi e^{-inx} e^{inx} [/mm] dx = [mm] \sum_{n = -k}^k c_n \bar{c_n} \int_{-\pi}^\pi [/mm] 1 dx = 2 [mm] \pi \sum_{n=-k}^k c_n \bar{c_n}$
[/mm]
Ich hoffe, dass ich mich nicht arg vertan habe - habe schon länger nichts mit Fourierreihen zu tun gehabt.
Lars
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:41 So 03.10.2004 | Autor: | Hanno |
Grüß dich Lars!
Hmm, bis zum letzten Schitt waren wir auch gekommen, aber eben den verstehen wir nicht. Kannst du den ein wenig erläutern?
Liebe Grüße,
Hanno
|
|
|
|
|
Hallo Hanno.
[mm]\integral_{-\pi}^{\pi}{f_k(x)*\bar f_k(x)}[/mm]
[mm]f_k(x) = \sum \limits_{n=-k}^{k}{c_n*e^{inx}}[/mm]
[mm]= \sum \limits_{n=-k}^{k}{c_n*(\cos nx + i*\sin nx)}[/mm]
[mm]\bar f_k(x) = \sum \limits_{m=-k}^{k}{\bar c_m*e^{-imx}}[/mm]
[mm]= \sum \limits_{m=-k}^{k}{\bar c_m*(\cos mx - i*\sin mx)}[/mm]
Daraus folgt:
[mm]\integral_{-\pi}^{\pi}{f_k(x)*\bar f_k(x)}[/mm]
[mm]= \integral_{-\pi}^{\pi}{\sum \limits_{n=-k}^{k}{c_n*(\cos nx + i*\sin nx)}*\sum \limits_{m=-k}^{k}{\bar c_m*(\cos mx - i*\sin mx)}}[/mm]
Es gilt:
[mm](\cos nx + i*\sin nx)*(\cos mx - i*\sin mx) = \cos nx*\cos mx + \sin nx*\sin mx -i*\cos nx*\sin mx+i*\cos mx*\sin nx[/mm]
[mm]\integral_{-\pi}^{\pi}{\cos nx*\cos mx + \sin nx*\sin mx -i*\cos nx*\sin mx+i*\cos mx*\sin nx} = \integral_{-\pi}^{\pi}{\cos nx*\cos mx + \sin nx*\sin mx}[/mm] da [mm]\integral_{-\pi}^{\pi}{\cos nx*\sin mx} = 0[/mm]
[mm]\integral_{-\pi}^{\pi}{\cos nx*\cos mx + \sin nx*\sin mx} = 0[/mm] wenn [mm]m \ne n[/mm]. Daher kann man wie folgt vereinfachen:
[mm]\integral_{-\pi}^{\pi}{\sum \limits_{n=-k}^{k}{c_n*(\cos nx - i*\sin nx)}*\sum \limits_{m=-k}^{k}{\bar c_m*(\cos mx - i*\sin mx)}}[/mm]
[mm]= \integral_{-\pi}^{\pi}{\sum \limits_{n=-k}^{k}{c_n*(\cos nx - i*\sin nx)*\bar c_n*(\cos nx - i*\sin nx)}}[/mm]
[mm]= \sum \limits_{n=-k}^{k}{c_n*\bar c_n}*\integral_{-\pi}^{\pi}{\cos nx*\cos nx + \sin nx*\sin nx}[/mm]
[mm]= \sum \limits_{n=-k}^{k}{c_n*\bar c_n}*2*\pi[/mm]
Ich hoffe das ist richtig so.
MfG
Jan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:23 So 03.10.2004 | Autor: | Gnometech |
Gruß!
Stimmt, ich habe automatisch verwendet, dass es sich bei [mm] $e^{-inx}$ [/mm] für $n [mm] \in \IN$ [/mm] um eine Orthonormalbasis handelt, d.h. [mm] $e^{-inx}$ [/mm] und [mm] $e^{-imx}$ [/mm] stehen für $m [mm] \not= [/mm] n$ senkrecht aufeinander - und zwar senkrecht bezüglich des Skalarproduktes in dem Funktionenraum:
[mm] $\langle [/mm] f,g [mm] \rangle [/mm] = [mm] \int [/mm] f [mm] \bar{g}$
[/mm]
Und daraus folgt, dass sich bei dem Produkt beider Summen nur die Summanden nicht wegheben, bei denen die Indizes übereinstimmen.
Den Beweis dafür hat Jan sehr richtig erbracht.
Lars
|
|
|
|