www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Fourier-Transformation
Fourier-Transformation < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Transformation: Fallunterscheidung ?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:36 So 03.12.2006
Autor: Phil-Andre

Hallo, ich schlage mic zurzeit mit ein parr Fourier-Transformationen rum.
Mir ist aufgefallen das mein Prof bei einigen aufgaben eine Fallunterscheidung zwischen [mm]\omega \neq 0[/mm] und [mm]\omega = 0[/mm] und bei einigen nicht.

Woran sehe ich ob ich eine Fallunterscheidung vornehmen muss oder nicht ?
Ich komm einfach nicht hinter.

Vielen Dank im voraus.



gruß, phil

        
Bezug
Fourier-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 03.12.2006
Autor: SEcki


> Woran sehe ich ob ich eine Fallunterscheidung vornehmen
> muss oder nicht ?
>  Ich komm einfach nicht hinter.

Mach doch das bitte konkreter, gib doch bitte die beispiele an, wo die Unterscheidung nötig ist - da steht jetzt 'ne Variable rum. Mehr nicht.

SEcki

Bezug
                
Bezug
Fourier-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 So 03.12.2006
Autor: Phil-Andre

Nunja die "Variable" wie du sagst ist natürlich das [mm] \omega [/mm] aus der Fourier-Transformation, wie mir meine Formelsammlung sagt ist die Fourier-Transformation schließlich definiert durch:

[mm] F[f(t)] = \integral_{\infty}^{-\infty}{f(t) \cdot e^{j \omega t} dt} [/mm]

und da ist unser [mm] \omega [/mm]

Weiterhin die Frage ist Aufgabenunabhängig, weil es grundlegend darum geht wann eine Fallunterscheidung stattfinden muss und wann nicht.

Aber gerne geb ich dir zu jedem ein Beispiel:

KEINE Fallunterscheidung bei der FourierTransformation von:
[mm] f(t) = \bruch{1}{\wurzel{4 \pi a}} \cdot e^{- \bruch{t^{2}}{4a^{2} }} [/mm]


Fallunterscheidung bei:
[mm] f(t) = \begin{cases} e^{- \alpha t} \cdot cos( \omega_{0}t ), & \mbox{für } t \ge 0} \\ 0, & \mbox{für } x < 0 \end{cases} [/mm]



Beste Grüße,
Phil.

Bezug
                        
Bezug
Fourier-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 03.12.2006
Autor: SEcki


> Nunja die "Variable" wie du sagst ist natürlich das [mm]\omega[/mm]
> aus der Fourier-Transformation,

Jaja, das steht bei dir so - muß ja nicht zwangsläufig so sein, ZB in Königsberger, Analysis II ist das nicht so. Wer sagt denn, dass in eurem Kontext das nicht ein Paramter sein kann, zB?

> wie mir meine
> Formelsammlung sagt ist die Fourier-Transformation
> schließlich definiert durch:
>  
> [mm] F[f(t)] = \integral_{\infty}^{-\infty}{f(t) \cdot e^{j \omega t} dt} [/mm]
>  
> und da ist unser [mm]\omega[/mm]

Aha, also so. Dir sollte halt klar sein, daß [m]\omega[/m] hier nichts weiter ist, als die Variable im Urbildbereich.

> Weiterhin die Frage ist Aufgabenunabhängig, weil es
> grundlegend darum geht wann eine Fallunterscheidung
> stattfinden muss und wann nicht.

Nein, das ist Unsinn. Eine fallunterscheidung bzgl. was? Wenn du die transformierte konkret ausrechnen musst? Wenn es um irgednwelche Eiegnschaften geht? Es ist immer noch total unklar hier.

> Aber gerne geb ich dir zu jedem ein Beispiel:
>  
> KEINE Fallunterscheidung bei der FourierTransformation
> von:
>  [mm] f(t) = \bruch{1}{\wurzel{4 \pi a}} \cdot e^{- \bruch{t^{2}}{4a^{2} }} [/mm]
>  
>
> Fallunterscheidung bei:
>  [mm] f(t) = \begin{cases} e^{- \alpha t} \cdot cos( \omega_{0}t ), & \mbox{für } t \ge 0} \\ 0, & \mbox{für } x < 0 \end{cases} [/mm]

Diese Beispiele übersteigen meinen Horizont. Ich weiß nicht, was du da höhren willst. "Ja, die beiden Funktionen sind unterschieldiche definiert. Die meine mit fallunterscheidung, die anere nicht." Oder was willst du höhren? Wo wird den hier transformiert? Da stehen blos zwei Funktionen ... alles total unklar hier! Vielleicht fragst du einfach deinen Prof, der weiß ja, was er gemacht hat (und muss nicht alles dazuraten :-()

Btw: da hat sich ja ein [m]\omega_0[/m] als Konstante eingeschlichen ...

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]