www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Fourier-Transformation
Fourier-Transformation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Transformation: trigonometrisches Polynom
Status: (Frage) beantwortet Status 
Datum: 00:25 Di 29.11.2005
Autor: Karl_Pech

Hallo Leute!


Hier ist eine Aufgabe, wo ich irgendwie nicht weiß, welche Definitionen ich verwenden sollte, und wo ich deshalb auch keinen Ansatz habe:


Zeige: Ist [mm] $t_n\left(\vartheta\right)$ [/mm] ein gerades trigonometrisches Polynom, so existiert ein reelles Polynom


[mm] $p_n\left(x\right) [/mm] := [mm] \sum_{k=0}^{n}a_kx^k$ [/mm] mit


[mm] $p_n\left(\cos\vartheta\right) [/mm] = [mm] t_n\left(\vartheta\right)$ [/mm]



Nun habe ich zunächst ungenaue Vorstellungen von dem, was hier mit 'gerade' gemeint ist. Im Internet habe ich z.B. folgende Definition gefunden:


[mm] $t_n\left(\vartheta\right) [/mm] := [mm] \sum_{k=-n}^{n}{c_ke^{ik\vartheta}}$ [/mm]


Aber man könnte doch auch die allgemeine Definition der Fourier-Reihe nehmen und die Indizierung etwas "anpassen", oder doch nicht?:


[mm] $t_n\left(\vartheta\right) [/mm] := [mm] a_0 [/mm] + [mm] \sum_{k=1}^{n}{a_{2k}\cos\left(2k\vartheta\right)} [/mm] + [mm] \sum_{k=1}^{n}{b_k\sin\left(2k\vartheta\right)}$ [/mm]


Aber irgendwie komme ich mit keinen der beiden Definitionen weiter. Es gilt ja:


[mm] $p_n\left(\cos\vartheta\right) [/mm] = [mm] \sum_{k=0}^{n}{a_k\left(\cos\vartheta\right)^k} [/mm] = [mm] a_0 [/mm] + [mm] \sum_{k=1}^{n}{a_k\left(\cos\vartheta\right)^k}$ [/mm]


Aber was mache ich mit [mm] $\cos\left(\vartheta\right)^k$? [/mm]

Das einzige, was mir dazu einfällt ist:

[mm] $\cos\left(k\vartheta\right) [/mm] + [mm] i\sin\left(k\vartheta\right) [/mm] = [mm] e^{ik\vartheta} [/mm] = [mm] \left(e^{i\vartheta}\right)^k [/mm] = [mm] \left(\cos\vartheta + i\sin\vartheta\right)^k$ [/mm]


Zu guter letzt wären da noch die Tchebychevpolynome, die ja eigentlich reelle Polynome sind, aber mit der Eigenschaft [mm] $p_n\left(\vartheta\right) [/mm] := [mm] T_n\left(\vartheta\right) [/mm] = [mm] \cos\left(n\vartheta\right)$ [/mm]

Im Moment scheint auch das eine "heiße Spur" zur Lösung zu sein. Aber ich weiß einfach nicht, wo ich bei diesen Ansätzen ansetzen soll. :(


Vielen Dank für eure Mühe!



Grüße
Karl





        
Bezug
Fourier-Transformation: Tipp
Status: (Antwort) fertig Status 
Datum: 10:48 Di 29.11.2005
Autor: banachella

Hallo!

Als gerades trigonometrisches Polynom würde ich eigentlich ein achsensymmetrisches Polynom bezeichnen, d.h. [mm] $t(\zeta)=t(-\zeta)$. [/mm] Wenn man sich das genauer ansieht bedeutet das, dass das Polynom keine Sinus-Terme enthalten darf.
An diesem Punkt kommen dann auch die Tchbeyshev Polynome 1. Art ins Spiel...

> [mm]t_n\left(\vartheta\right) := \sum_{k=-n}^{n}{c_ke^{ik\vartheta}}[/mm]

Das ist ja eigentlich die allgemeine Definition für ein trigonometrisches Polynom. Bei einem geraden Polynom gilt dann [mm] $c_k=c_{-k}$ [/mm] für alle $k$.

> [mm]t_n\left(\vartheta\right) := a_0 + \sum_{k=1}^{n}{a_{2k}\cos\left(2k\vartheta\right)} + \sum_{k=1}^{n}{b_k\sin\left(2k\vartheta\right)}[/mm]

Diese Umformung ist fast richtig. Es gilt im allgemeinen:
[mm]t_n\left(\vartheta\right) := a_0 + \sum_{k=1}^{n}2{a_{k}\cos\left(k\vartheta\right)} + \sum_{k=1}^{n}2{b_k\sin\left(k\vartheta\right)}[/mm]

Dabei ist [mm] $a_k=\bruch{c_k+c_{-k}}2$ [/mm] und [mm] $b_k=\bruch{c_k-c_{-k}}2$. [/mm]

Hilft dir dieser Tipp weiter?

Gruß, banachella


Bezug
                
Bezug
Fourier-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Di 29.11.2005
Autor: Karl_Pech

Hallo banachella,


> [..] dann [mm]c_k=c_{-k}[/mm] für alle [mm]k[/mm]. [..]
> Diese Umformung ist fast richtig. Es gilt im allgemeinen:
>  [mm]t_n\left(\vartheta\right) := a_0 + \sum_{k=1}^{n}2{a_{k}\cos\left(k\vartheta\right)} + \sum_{k=1}^{n}2{b_k\sin\left(k\vartheta\right)}[/mm]
>  
> Dabei ist [mm]a_k=\bruch{c_k+c_{-k}}2[/mm] und
> [mm]b_k=\bruch{c_k-c_{-k}}2[/mm].


Also dann ... mal sehen wie weit ich jetzt komme:


Sei:


[mm]t_n\left(\vartheta\right) := a_0 + \sum_{k=1}^{n}{2a_k\cos\left(k\vartheta\right)} + \sum_{k=1}^{n}{2b_k\sin\left(k\vartheta\right)}[/mm]


ein gerades trigonometrisches Polynom mit


[mm] $a_k [/mm] := [mm] \frac{c_k + c_{-k}}{2},\ b_k [/mm] := [mm] \frac{c_k-c_{-k}}{2}\textrm{ und }c_k [/mm] = [mm] c_{-k}$ [/mm]



Dann gilt:


[mm]t_n\left(\vartheta\right) = a_0 + \sum_{k=1}^{n}{2a_k\cos\left(k\vartheta\right)} + \sum_{k=1}^{n}{2b_k\sin\left(k\vartheta\right)} = a_0 + \sum_{k=1}^{n}{2a_k\cos\left(k\vartheta\right)}[/mm]


und für [mm] $p_n\left(x\right)$ [/mm] gilt ja:


[mm] $p_n\left(\cos\vartheta\right) [/mm] = [mm] a_0 [/mm] + [mm] \sum_{k=1}^{n}{a_k\cos^k\vartheta}$ [/mm]


Vom Aussehen her scheinen sich [mm] $t_n$ [/mm] und [mm] $p_n$ [/mm] ja bereits zu ähneln. Aber was mache ich mit [mm] $\cos^k\vartheta$? [/mm] Die Tchebychev-Polynome müssen jetzt wohl irgendwie benutzt werden, aber wie... ?


Danke für die Hilfe!



Grüße
Karl





Bezug
                        
Bezug
Fourier-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 02.12.2005
Autor: banachella

Hallo Karl!

> Vom Aussehen her scheinen sich [mm]t_n[/mm] und [mm]p_n[/mm] ja bereits zu
> ähneln. Aber was mache ich mit [mm]\cos^k\vartheta[/mm]? Die
> Tchebychev-Polynome müssen jetzt wohl irgendwie benutzt
> werden, aber wie... ?

Zum einen heißt es ja eigentlich [mm] $\cos(k\theta)$ [/mm] nicht [mm] $\cos^k(\theta)$. [/mm] Und jetzt benutze, dass [mm] $T_n(\cos\theta)=\cos(n\theta)$... [/mm]

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]