www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Forwardpreis
Forwardpreis < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Forwardpreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 06.02.2011
Autor: Georg-Ferdinand

Aufgabe
liegt nicht vor, es ist ein allgemeines Verständnisproblem

Hallo

Ich schreibe gerade an meiner Diplomarbeit und behandle darin u.a. auch stochastische Preismodelle. Ich habe eine Frage, wie man vom Spotpreis zum Forwardpreis kommt, wenn man für den Spotpreis einen bestimmten Prozess unterstellt. Der einfachste Prozess ist die geometrisch Brownsche Bewegung (GBM). In der risikoneutralen Form:

dS = (r - [mm] \delta)S [/mm] dt + [mm] \sigma [/mm] S dW

  [mm] \delta [/mm] = Conenience yield
  r = risikoloser Zinssatz

In vielen Büchern wie z.B. in []"Energy and Power Risk Management" von Eydeland und Wolyniec, wird der daraus abgeleitete Forwardpreis zum Zeitpunkt t mit der Fälligkeit T wie folgt angegeben:

F(t,T) = S [mm] e^{(r-\delta)(T-t)} [/mm]

Es handelt sich dabei um einen allgemeinen Zusammenhang, der auf Non-Arbitrage-Überlegungen basiert. Anscheinend darf dieser Zusammenhang aber nur auf Spootpreisprozesse angewandt werden, die einer GBM folgen. Denn folgt S einem anderen Prozesss, wie z.B. einer Mean-Reversion-Bewegung, dann gilt ein völlig anderer Zusammenhang zwischen Spot- und Forwardpreis. (Die Formel dafür ist sehr kompliziert und ich verzichte hier deshalb mal auf eine Erwähnung).
Was ich nicht verstehe ist, warum die Non-Arbitrage-Überlegung nicht auch auf andere Prozesse angewandt werden kann, so dass immer der zuerst genannte Zusammenhang zwischen Spot- und Forwardpreis herauskommt.

Über ein paar Denkanstöße würde ich mich sehr freuen. Vielen Dank im Voraus.

Georg-Ferdinand

P.S.: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/default3.html?topic=150448=105


        
Bezug
Forwardpreis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 07.02.2011
Autor: Blech

Hi,

bei Deiner Formel setzen wir voraus, daß S, bereinigt um die risikolose Entwicklung, ein Martingal ist. Das ist bei mean-reversion nicht der Fall.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]