www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Formelumwandlung
Formelumwandlung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formelumwandlung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Fr 27.05.2005
Autor: boernie

hallo matheprofis!

wer kann mir die vorschüssige ermittlung des barwertes bei mehrmalig gleich hohen zahlungen nach "n" umformen?

die formel lautet:

BW = A * ((1-(1/((1+i)hoch "n"))/(1-(1/(1+i))))

danke, das wäre echt lieb von euch, bin leider in mathe ein bißchen schwach!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Formelumwandlung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Fr 27.05.2005
Autor: Karl_Pech

Hallo Bernhard,


> [formel nach n umformen]
> die formel lautet:
>  
> BW = A * ((1-(1/((1+i)hoch "n"))/(1-(1/(1+i))))


Hier fehlt eine schließende Klammer, aber ich vermute, daß es Dir um folgende Formel geht:


[m]{\operatorname{BW}} = A - \frac{{A\left( {i + 1} \right)^{1 - n} }}{i}[/m]


Benutze in Zukunft den Formeleditor des MatheRaum. Jetzt zur Umformung:


[m]\begin{gathered} {\operatorname{BW}} = A - \frac{{A\left( {i + 1} \right)^{1 - n} }} {i} \Leftrightarrow {\operatorname{BW}} - A = - \frac{{A\left( {i + 1} \right)^{1 - n} }} {i} \Leftrightarrow A - {\operatorname{BW}} = \frac{{A\left( {i + 1} \right)^{1 - n} }} {i} \hfill \\ \Leftrightarrow 1 - \frac{{{\operatorname{BW}}}} {A} = \frac{{\left( {i + 1} \right)^{1 - n} }} {i} \Leftrightarrow i - \frac{{i*{\operatorname{BW}}}} {A} = \left( {i + 1} \right)^{1 - n} = e^{\left( {1 - n} \right)\ln \left( {i + 1} \right)} \hfill \\ \Rightarrow \ln \left( {i - \frac{{i*{\operatorname{BW}}}} {A}} \right) = \left( {1 - n} \right)\ln \left( {i + 1} \right) \Leftrightarrow 1 - n = \frac{{\ln \left( {i - \frac{{i*{\operatorname{BW}}}} {A}} \right)}} {{\ln \left( {i + 1} \right)}} \Leftrightarrow 1 - \frac{{\ln \left( {i - \frac{{i*{\operatorname{BW}}}} {A}} \right)}} {{\ln \left( {i + 1} \right)}} = n \hfill \\ \end{gathered}[/m]



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]