www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Formel für N gilt auch für a€Q
Formel für N gilt auch für a€Q < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für N gilt auch für a€Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Mo 26.10.2009
Autor: steppenhahn

Aufgabe
Man begründe, dass die in der Vorlesung zunächst nur für natürliche Zahlen [mm] $a\not= [/mm] 1$ bewiesene geometrische Summenformel

[mm] $\sum_{k=0}^{n}a^{k} [/mm] = [mm] \frac{1-a^{n+1}}{1-a}$ [/mm]

auch für allgemeine rationale Zahlen [mm] $a\in\IQ, a\not= [/mm] 1$ gilt.

Hallo!

Bei der obigen Aufgabe weiß ich nicht wirklich, was ich machen soll...
Was sollte denn dagegen sprechen? Wir wissen, dass die Operationen "+" und "*" in [mm] \IQ [/mm] abgeschlossen sind.

Was genau muss ich zeigen?

Bitte um einen Denkanstoß,

vielen Dank für Eure Mühe und Grüße,

Stefan

        
Bezug
Formel für N gilt auch für a€Q: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mo 26.10.2009
Autor: fred97


> Man begründe, dass die in der Vorlesung zunächst nur für
> natürliche Zahlen [mm]a\not= 1[/mm] bewiesene geometrische
> Summenformel
>  
> [mm]\sum_{k=0}^{n}a^{k} = \frac{1-a^{n+1}}{1-a}[/mm]
>  
> auch für allgemeine rationale Zahlen [mm]a\in\IQ, a\not= 1[/mm]
> gilt.
>  Hallo!
>  
> Bei der obigen Aufgabe weiß ich nicht wirklich, was ich
> machen soll...
>  Was sollte denn dagegen sprechen? Wir wissen, dass die
> Operationen "+" und "*" in [mm]\IQ[/mm] abgeschlossen sind.
>  
> Was genau muss ich zeigen?

Kupfere den Beweis aus der Vorlesung einfach nach, wobei Du Dich überzeugen soltest, dass alle Schritte auch in [mm] \IQ [/mm] machbar sind

FRED





>  
> Bitte um einen Denkanstoß,
>  
> vielen Dank für Eure Mühe und Grüße,
>  
> Stefan


Bezug
                
Bezug
Formel für N gilt auch für a€Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Mo 26.10.2009
Autor: steppenhahn

Hallo fred,

danke für deine Antwort!
Also so:

Induktionsanfang (n = 1):

Sei $a [mm] \in \IQ$. [/mm] Dann ist

[mm] $\sum_{k=0}^{1}a^{k} [/mm] = [mm] a^{0} [/mm] + [mm] a^{1} [/mm] = 1+a = [mm] \frac{(1-a)}{(1-a)}*(1+a) [/mm] = [mm] \frac{(1-a)*(1+a)}{(1-a)} [/mm] = [mm] \frac{1-a^{2}}$. [/mm]

Induktionsschluss:

Sei [mm] $a\in \IQ$. [/mm] Dann ist

[mm] $\sum_{k=0}^{n+1}a^{k} [/mm] = [mm] \left(\sum_{k=0}^{\n}a^{k}\right) [/mm] + [mm] a^{n+1} \overset{IV}{=} \frac{1-a^{n+1}}{1-a} [/mm] + [mm] a^{n+1}$ [/mm]

$= [mm] \frac{1-a^{n+1}}{1-a} [/mm] + [mm] \frac{(1-a)}{(1-a)}*a^{n+1} =\frac{1-a^{n+1}}{1-a} [/mm] + [mm] \frac{a^{n+1}-a^{n+2}}{1-a} [/mm] = [mm] \frac{1-a^{n+1} + a^{n+1} - a^{n+2}}{1-a} [/mm] = [mm] \frac{1- a^{n+2}}{1-a}$. [/mm]

Aber an welchen Stellen sollte ich jetzt besonders betonen, dass die Aussagen auch für [mm] a\in\IQ [/mm] gelten?
Wenn ich [mm] $\frac{(1-a)}{(1-a)} [/mm] = 1$ erzeuge?

Grüße,
Stefan

Bezug
                        
Bezug
Formel für N gilt auch für a€Q: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mo 26.10.2009
Autor: fred97

Du hast nur Rechenregeln benutzt, die in jedem Körper gelten. Dein Beweis ist so O.K.


FRED

Bezug
                                
Bezug
Formel für N gilt auch für a€Q: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Mo 26.10.2009
Autor: steppenhahn

Okay,

danke Fred für deine Antwort!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]