www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Formel Bernoulli-Schema
Formel Bernoulli-Schema < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel Bernoulli-Schema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 17.06.2007
Autor: sancho1980

Hallo,

ich zitiere:

"Seien [mm] (\Omega, [/mm] P) ein W-Raum und [mm] X_i: \Omega \to [/mm] {0,1} (i [mm] \in \IN) [/mm] unabhaengige, gemaess B(1,p) verteilte ZVen; d.h., es gilt

[mm] P({\omega \in \Omega | X_i(\omega) = 1}) [/mm] = p

und

[mm] P({\omega \in \Omega | X_i(\omega) = 0}) [/mm] = 1 - p =: q (i=1,...,n).

Sei [mm] X:=(X_1,...,X_n). [/mm] Wegen der vorausgesetzten stoachstischen Unabhaengigkeit der [mm] X_i [/mm] gilt

[mm] P_x [/mm] = [mm] P_x_1 [/mm] x ... x [mm] P_x_n [/mm] = x B(1,p).

Damit erhaelt man fuer ein Element [mm] (\omega_1,...,\omega_n) \in {0,1}^n [/mm] bei dem die 1 genau k-mal auftritt

[mm] P_x({(\omega_1,...,\omega_n)}) [/mm] = [mm] \produkt_{i=1}^{n} P_x_i({\omega_i}) [/mm] = [mm] p^kq^{n-k}, [/mm]

d.h. also, dass die Wahrscheinlichkeit eines solchen Elementes durch [mm] p^kq^{n-k} [/mm] gegeben ist."

Kann mir einer bitte mal ausfuehrlicher erklaeren, wie man auf die Formel [mm] p^kq^{n-k} [/mm] kommt? Ich raff es nicht :-(

Danke,

Martin

        
Bezug
Formel Bernoulli-Schema: Ein Beispiel
Status: (Antwort) fertig Status 
Datum: 21:35 So 17.06.2007
Autor: luis52

Moin Martin,

betrachte den Fall n=5.  Wir wollen [mm] $P_x({(\omega_1,...,\omega_n)})= P_x({(\omega_1,...,\omega_5)})=P_x({(0,1,1,0,1)})$ [/mm] bestimmen.  Wegen der Unabhaengigkeit erhalten wir hierfuer [mm] $\produkt_{i=1}^{n} P_{x_i}({\omega_i})=P_{x_1}(0)\times P_{x_2}(1)\times P_{x_3}(1)\times P_{x_4}(0)\times P_{x_5}(1)=(1-p)\times p\times p\times (1-p)\times p=p^3(1-p)^{5-2}$. [/mm]

Hilft das?


lg
Luis              

Bezug
                
Bezug
Formel Bernoulli-Schema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 So 17.06.2007
Autor: sancho1980

ja sehr, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]