www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Folgerungen bei Funktionen
Folgerungen bei Funktionen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgerungen bei Funktionen: Teilmengen bei Urbildern
Status: (Frage) beantwortet Status 
Datum: 17:56 Di 09.11.2010
Autor: Freaky

Aufgabe
Seien X und Y Mengen und f , g : X →Y zwei Abbildungen.
Beweisen Sie: Gilt f^−1(B) ⊆ g^-1(B) für jede Teilmenge B ⊆Y , dann ist f = g

Darf ich das mit Hilfe der Aussagenlogik beweisen?
Ich würde setzen:
Aussage A:für alle  B ⊆Y :f^−1(B) ⊆ g^-1(B)
Aussage B: ist f = g
Aussage C: A => B

Ich würde es dann über einen Widerspruchsbeweis machen, d.h. annehmenen, C wäre falsch, also nichtC richtig. Von nichtC könnte man dann beweisen, dass es aber falsch ist, also C richtig.

Oder gibt es einen schöneren/einfacheren Beweis?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folgerungen bei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 Mi 10.11.2010
Autor: fred97

Nimm ein x [mm] \in [/mm] X und setze y:=f(x) und B:= { y }. Dann ist x [mm] \in f^{-1}(B). [/mm]

Nach Vor. gilt dann: x [mm] \in g^{-1}(B). [/mm]

Jetzt machst Du weiter.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]