www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Folgen auflösen
Folgen auflösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Do 14.10.2004
Autor: spacephreak

Hallo
Ich hatte folgende Aufgabenstellung, leider konnte ich nicht alle Folgen dazu lösen:
Bestimmen Sie für die nachstehenden Folgen (an) und die angegebenen  $ [mm] \varepsilon [/mm] $ - Werte jweils ein n $ [mm] \varepsilon \in \IN, [/mm] $ so dass |an| <  $ [mm] \varepsilon [/mm] $ für alle n  $ [mm] \ge [/mm] $ n $ [mm] \varepsilon [/mm] $ gilt:

1. Aufgabe:
an=  [mm] \bruch{(-1)^{n}}{3n} [/mm]
[mm] \varepsilon [/mm] = [mm] 10^{-5} [/mm]

Mein Lösungsansatz:
[mm] \bruch{(-1)^{n}}{3n} [/mm] < 1/100000   |*100000 | *3n
100000* [mm] (-1)^{n} [/mm] < 3n
wenn man jetzt den logarithmus nehmen will (um das n herunterzuholen), dann geht es ja nicht wegen dem -1. Ist diese Aufgabe somit nicht lösbar?

2. Aufgabe:
an = [mm] \bruch{(-2)^{n}}{n!} [/mm]
[mm] \varepsilon [/mm] = [mm] 10^{-4} [/mm]

Hier hab ich auch erst zwei mal multipliziert, um den Bruch verschwinden zu lassen, dann hab ich aber auch das selbe Problem mit log -2

Mfg

Markus

        
Bezug
Folgen auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 14.10.2004
Autor: Micha

Hallo mal wieder!

> Hallo
>  Ich hatte folgende Aufgabenstellung, leider konnte ich
> nicht alle Folgen dazu lösen:
>  Bestimmen Sie für die nachstehenden Folgen (an) und die
> angegebenen  [mm]\varepsilon[/mm] - Werte jweils ein n [mm]\varepsilon \in \IN,[/mm]
> so dass |an| <  [mm]\varepsilon[/mm] für alle n  [mm]\ge[/mm] n [mm]\varepsilon[/mm]
> gilt:
>
> 1. Aufgabe:
>  an=  [mm]\bruch{(-1)^{n}}{3n}[/mm]
> [mm]\varepsilon[/mm] = [mm]10^{-5} [/mm]
>  
> Mein Lösungsansatz:
>   [mm]\bruch{(-1)^{n}}{3n}[/mm] < 1/100000   |*100000 | *3n
>   100000* [mm](-1)^{n}[/mm] < 3n
> wenn man jetzt den logarithmus nehmen will (um das n
> herunterzuholen), dann geht es ja nicht wegen dem -1. Ist
> diese Aufgabe somit nicht lösbar?

Du hast doch [mm]|a_n| < \varepsilon[/mm]  gegeben. Also ist der Ansatz:
[mm] $\left|\bruch{(-1)^{n}}{3n}\right| [/mm] < [mm] \frac{1}{100000}$ [/mm]
[mm] $\Rightarrow \frac{\left|(-1)^n\right|}{\left|3n\right|} [/mm] < [mm] \frac{1}{100000}$ [/mm]   << nun ist aber [mm] $\left|(-1)^n\right| [/mm] = 1$ für alle [mm] n \in \IN[/mm], ebenso $3n>0$ deswegen:
[mm] $\Rightarrow \frac{1}{3n} [/mm] < [mm] \frac{1}{100000}$ [/mm]
[mm] $\gdw [/mm] 100000 < 3n$
[mm] $\Rightarrow \frac{100000}{3} [/mm] = [mm] 33333,3\dots [/mm] <n$
Damit ist das $n = 33334$.

>  
> 2. Aufgabe:
>  an = [mm]\bruch{(-2)^{n}}{n!} [/mm]
>   [mm]\varepsilon[/mm] = [mm]10^{-4} [/mm]
>  
> Hier hab ich auch erst zwei mal multipliziert, um den Bruch
> verschwinden zu lassen, dann hab ich aber auch das selbe
> Problem mit log -2

Auch hier ist das gar nicht nötig:
[mm] \left|\bruch{(-2)^{n}}{n!}\right|<\frac{1}{10000}[/mm]
[mm] \gdw \bruch{\left| (-1)^n \cdot 2^n\right|}{\left|n!\right|} < \frac{1}{10000}[/mm]    << gleiche Überlegung wie oben und zum Glück ist alles größer als 0 und die restlichen Beträge fallen weg:
[mm] \Rightarrow \frac{2^n}{n!} < \frac{1}{10000}[/mm]
[mm] \gdw 10000 \cdot 2^n < n![/mm]

Jetzt müssen wir leider wieder die gleiche überlegung wie gestern anstellen, wenn wir im elementaren der Analysis bleiben wollen. Ich denke du findest den Ansatz aber sehr schnell allein.

Das soll fürs erste genügen.

Lieber Gruß,
Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]