www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen Konvergenz
Folgen Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Mi 16.02.2011
Autor: yuppi

Aufgabe
Untersuche die Folge auf Konvergenz. (Ohne L,Hospital)

[mm] n(1-\wurzel{1-\bruch{3}{n}}) [/mm]

Hallo Nochmal.

Erstmal hab ich ein Schrecken bekommen, aber ich glaub man muss immer cool bleiben, naja...

Also ich habe erweitert.

[mm] \bruch{n(1-\wurzel{1-\bruch{3}{n}}) (1+\wurzel{1-\bruch{3}{n}})}{ (1+\wurzel{1-\bruch{3}{n}})} [/mm]

Und jetzt ? Bin ich auf dem Holzweg ? Krieg dir Wurzel nicht weg.
Also beide Klammern im Multipliziert, dann ist noch immer die Wurzel im Nenner ....  Kann ich sagen , dass wenn ich den Nenner gegen unendlich schieße dieser gegen 2 konvergiert und der Zähler bach dem ausmultiplizieren ist ja da ein betrag und das konvergiert dann gegen Betrag vom Zähler durch 2 ?

Ich hoffe habe richtig erweitert. Bei Wurzeln immer erweitern ?

Besten dank schonmal

        
Bezug
Folgen Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 16.02.2011
Autor: yuppi

Also ich habe jetzt [mm] \bruch{3}{2} [/mm] raus....

Bezug
                
Bezug
Folgen Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 16.02.2011
Autor: schachuzipus

Hallo yuppi,


> Also ich habe jetzt [mm]\bruch{3}{2}[/mm] raus....

[daumenhoch]

Jo, bei Summen und Differenzen von Wurzeln ist es fast immer ein probates Mittel so zu erweitern, dass du die 3.binom. Formel bekommst, dann fallen die Wurzeln weg

Gruß

schachuzipus


Bezug
        
Bezug
Folgen Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mi 16.02.2011
Autor: kamaleonti

Hallo,
Untersuche die Folge auf Konvergenz. (Ohne L,Hospital)

>  
> [mm]n(1-\wurzel{1-\bruch{3}{n}})[/mm]
>  Hallo Nochmal.
>  
> Erstmal hab ich ein Schrecken bekommen, aber ich glaub man
> muss immer cool bleiben, naja...

Genau :D

>  
> Also ich habe erweitert.

Tolle Idee!

>  
> [mm]\bruch{n(1-\wurzel{1-\bruch{3}{n}}) (1+\wurzel{1-\bruch{3}{n}})}{ (1+\wurzel{1-\bruch{3}{n}})}[/mm]

Jetzt kannst du den Zähler mit der 3.binomischen Formel vereinfachen (dazu hast du schließlich erweitert):
[mm] \left(1-\wurzel{1-\bruch{3}{n}}\right) \left(1+\wurzel{1-\bruch{3}{n}}\right)=1-\left(\wurzel{1-\bruch{3}{n}}\right)^2=1-(1-\frac{3}{n})=\frac{3}{n}. [/mm]
Dann geht der Rest ganz leicht! :-)

Gruß!


Bezug
                
Bezug
Folgen Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Mi 16.02.2011
Autor: yuppi

Danke wirklich. Ich hatte gestern noch Alpträume vor diesen Folgen. Ich mach heute nur Folgen dann wird das hoffentlich. Das sind 20 von 100 Punkte und dachte erst ich würde keinen bekommen. Ich such noch paar Aufgaben und bei Fragen,poste ich die hier rein..

Danke nochmals.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]